Generative models for inverse design of inorganic solid materials

被引:28
作者
Chen, Litao [1 ]
Zhang, Wentao [1 ]
Nie, Zhiwei [1 ]
Li, Shunning [1 ]
Pan, Feng [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, 2199 Lishui Rd, Shenzhen 518055, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2021年 / 1卷 / 01期
基金
国家重点研发计划;
关键词
Inverse design; inorganic solid materials; machine learning; generative model; ENCODING CRYSTAL-STRUCTURE; CUBIC LI-ARGYRODITES; MATERIALS DISCOVERY; MACHINE; REPRESENTATION; PREDICTION; ALGORITHM; SMILES; ENERGY;
D O I
10.20517/jmi.2021.07
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Overwhelming evidence has been accumulating that materials informatics can provide a novel solution for materials discovery. While the conventional approach to innovation relies mainly on experimentation, the generative models stemming from the field of machine learning can realize the long-held dream of inverse design, where properties are mapped to the chemical structures. In this review, we introduce the general aspects of inverse materials design and provide a brief overview of two generative models, variational autoencoder and generative adversarial network, which can be utilized to generate and optimize inorganic solid materials according to their properties. Reversible representation schemes for generative models are compared between molecular and crystalline structures, and challenges in regard to the latter are also discussed. Finally, we summarize the recent application of generative models in the exploration of chemical space with compositional and configurational degrees of freedom, and potential future directions are speculatively outlined.
引用
收藏
页数:15
相关论文
共 101 条
[31]  
Hoffmann J, 2019, Arxiv, DOI arXiv:1909.00949
[32]   Machine learning and artificial neural network accelerated computational discoveries in materials science [J].
Hong, Yang ;
Hou, Bo ;
Jiang, Hengle ;
Zhang, Jingchao .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE, 2020, 10 (03)
[33]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[34]   Structure-Based Synthesizability Prediction of Crystals Using Partially Supervised Learning [J].
Jang, Jidon ;
Gu, Geun Ho ;
Noh, Juhwan ;
Kim, Juhwan ;
Jung, Yousung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2020, 142 (44) :18836-18843
[35]   An inverse design framework for prescribing precipitation heat treatments from a target microstructure [J].
Johnson, L. ;
Arroyave, R. .
MATERIALS & DESIGN, 2016, 107 :7-17
[36]  
Jolliffe I., 2011, International Encyclopedia of Statistical Science, P1094, DOI [10.1007/978-3-642-04898-2_455, DOI 10.1007/978-3-642-04898-2_455]
[37]   Modelling feasibility constraints for materials design: Application to inverse crystallographic texture problem [J].
Jung, Jaimyun ;
Yoon, Jae Ik ;
Park, Seong-Jun ;
Kang, Jun-Yun ;
Kim, Gwang Lyeon ;
Song, Yi Hwa ;
Park, Sung Taek ;
Oh, Kyeong Won ;
Kim, Hyoung Seop .
COMPUTATIONAL MATERIALS SCIENCE, 2019, 156 :361-367
[38]   druGAN: An Advanced Generative Adversarial Autoencoder Model for de Novo Generation of New Molecules with Desired Molecular Properties in Silico [J].
Kadurin, Artur ;
Nikolenko, Sergey ;
Khrabrov, Kuzma ;
Aliper, Alex ;
Zhavoronkov, Alex .
MOLECULAR PHARMACEUTICS, 2017, 14 (09) :3098-3104
[39]   The cornucopia of meaningful leads: Applying deep adversarial autoencoders for new molecule development in oncology [J].
Kadurin, Artur ;
Aliper, Alexander ;
Kazennov, Andrey ;
Mamoshina, Polina ;
Vanhaelen, Quentin ;
Khrabrov, Kuzma ;
Zhavoronkov, Alex .
ONCOTARGET, 2017, 8 (07) :10883-10890
[40]   Machine Learning Prediction of Heat Capacity for Solid Inorganics [J].
Kauwe, Steven K. ;
Graser, Jake ;
Vazquez, Antonio ;
Sparks, Taylor D. .
INTEGRATING MATERIALS AND MANUFACTURING INNOVATION, 2018, 7 (02) :43-51