Deep Hough-Transform Line Priors

被引:50
作者
Lin, Yancong [1 ]
Pintea, Silvia L. [1 ]
van Gemert, Jan C. [1 ]
机构
[1] Delft Univ Technol, Comp Vis Lab, Delft, Netherlands
来源
COMPUTER VISION - ECCV 2020, PT XXII | 2020年 / 12367卷
关键词
Hough transform; Global line prior; Line segment detection; SEGMENT EXTRACTION; DETECT; ACCURATE;
D O I
10.1007/978-3-030-58542-6_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Classical work on line segment detection is knowledge-based; it uses carefully designed geometric priors using either image gradients, pixel groupings, or Hough transform variants. Instead, current deep learning methods do away with all prior knowledge and replace priors by training deep networks on large manually annotated datasets. Here, we reduce the dependency on labeled data by building on the classic knowledge-based priors while using deep networks to learn features. We add line priors through a trainable Hough transform block into a deep network. Hough transform provides the prior knowledge about global line parameterizations, while the convolutional layers can learn the local gradient-like line features. On the Wireframe (ShanghaiTech) and York Urban datasets we show that adding prior knowledge improves data efficiency as line priors no longer need to be learned from data.
引用
收藏
页码:323 / 340
页数:18
相关论文
共 56 条
[1]  
Almazan E.J., 2017, P IEEE C COMP VIS PA, P2031
[2]   Recent progress in road and lane detection: a survey [J].
Bar Hillel, Aharon ;
Lerner, Ronen ;
Levi, Dan ;
Raz, Guy .
MACHINE VISION AND APPLICATIONS, 2014, 25 (03) :727-745
[3]  
Barbu A, 2019, ADV NEUR IN, V32
[4]  
Beatty J., 2012, Honors thesis
[5]  
Beltrametti M.C., 2019, ARXIV
[6]   Invariant Scattering Convolution Networks [J].
Bruna, Joan ;
Mallat, Stephane .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2013, 35 (08) :1872-1886
[7]   EXTRACTING STRAIGHT-LINES [J].
BURNS, JB ;
HANSON, AR ;
RISEMAN, EM .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1986, 8 (04) :425-455
[8]   A Novel Linelet-Based Representation for Line Segment Detection [J].
Cho, Nam-Gyu ;
Yuille, Alan ;
Lee, Seong-Whan .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (05) :1195-1208
[9]  
Denis P, 2008, LECT NOTES COMPUT SC, V5303, P197, DOI 10.1007/978-3-540-88688-4_15
[10]   The finite ridgelet transform for image representation [J].
Do, MN ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2003, 12 (01) :16-28