Ionic Hydrophobic Gates on Metal-Organic Frameworks Enable High-Purity CO2 Separation from Humid Flue Gas

被引:0
作者
Sun, Deyun [1 ]
Chen, Shangqing [1 ]
He, Miao [1 ]
Xu, Hongxue [1 ]
Sun, Yongxiang [2 ]
Shi, Lijuan [1 ]
Zeng, Hongbo [2 ]
Yi, Qun [1 ]
机构
[1] Wuhan Inst Technol, Sch Chem Engn & Pharm, Key Lab Green Chem Engn Proc, Minist Educ, Wuhan 430205, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
CARBON-DIOXIDE CAPTURE; ADSORPTION; SITES; RESISTANT; CO2/N-2; STATE;
D O I
10.1021/jacs.5c02093
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient extraction of high-purity CO2 from humid flue gas via adsorptive separation offers a promising and sustainable solution for carbon reduction and downstream applications. However, the coadsorption of H2O vapor and N2 from humid flue gas remains a persistent challenge that limits separation efficiency. To overcome this issue, this work introduces a novel concept of ionic hydrophobic gates on porous adsorbents, which enables one-step separation of high-purity CO2 directly from humid flue gas. By assembling hydrophobic ionic liquids and fluorine-rich terephthalaldehyde onto the surface of a metal-organic framework (MOF), this design establishes H2O barriers and CO2 channels on the outer shell while maintaining pore integrity in the core. The resulting core-shell material demonstrates exceptional CO2 adsorption capacity and an extraordinary CO2/N2 selectivity of 1780 (15/85, v/v), surpassing conventional adsorbents. Notably, dry CO2 with 99.999% purity is successfully extracted from humid flue gas (relative humidity, RH = 100%) in a single breakthrough experiment. In situ diffuse reflectance Fourier transform infrared spectroscopy (in situ DRIFTS) and density functional theory calculations reveal that fluorine-rich hydrophobic sites act as effective H2O barriers, while ionic liquid segments facilitate the transport of CO2 through hydrogen bonding and electrostatic interactions. Owing to its excellent scalability and broad compatibility with diverse MOF platforms, this ionic hydrophobic gating strategy offers a robust and versatile approach for constructing advanced gas separation materials, holding great promise for industrial applications in carbon capture, clean energy, and sustainable chemical processes.
引用
收藏
页码:24370 / 24381
页数:12
相关论文
共 58 条
[31]   Separation of CO2 and N2 on a hydrophobic metal organic framework CALF-20 [J].
Nguyen, Tai T. T. ;
Lin, Jian-Bin ;
Shimizu, George K. H. ;
Rajendran, Arvind .
CHEMICAL ENGINEERING JOURNAL, 2022, 442
[32]   Evidence for a rosiaite-structured high-pressure silica phase and its relation to lamellar amorphization in quartz [J].
Otzen, Christoph ;
Liermann, Hanns-Peter ;
Langenhorst, Falko .
NATURE COMMUNICATIONS, 2023, 14 (01)
[33]   Selective CO2 adsorption over functionalized Zr-based metal organic framework under atmospheric or lower pressure: Contribution of functional groups to adsorption [J].
Park, Jong Min ;
Yoo, Dong Kyu ;
Jhung, Sung Hwa .
CHEMICAL ENGINEERING JOURNAL, 2020, 402
[34]   Atomically dispersed lewis acid sites meet poly(ionic liquid)s networks for solvent-free and co-catalyst-free conversion of CO2 to cyclic carbonates [J].
Peng, Huaitao ;
Zhang, Qiuju ;
Wang, Yinming ;
Gao, Honglin ;
Zhang, Nian ;
Zhou, Jing ;
Zhang, Linjuan ;
Yang, Qiu ;
Yang, Qihao ;
Lu, Zhiyi .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2022, 313
[35]   Energy and productivity efficient vacuum pressure swing adsorption process to separate CO2 from CO2/N2 mixture using Mg-MOF-74: A CFD simulation [J].
Qasem, Naef A. A. ;
Ben-Mansour, Rached .
APPLIED ENERGY, 2018, 209 :190-202
[36]   Irreversible Lattice Expansion Effects in Nanoscale Indium Oxide for CO2 Hydrogenation Catalysis [J].
Qiu, Chenyue ;
Sun, Junchuan ;
Li, Mengsha ;
Mao, Chengliang ;
Song, Rui ;
Zhang, Zeshu ;
Perovic, Doug D. ;
Howe, Jane Y. ;
Wang, Lu ;
Ozin, Geoffrey A. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2024, 146 (49) :33997-34007
[37]   High-Efficiency CO2/N2 Separation Enabled by Rotation of Electrostatically Anchored Flexible Ligands in Metal-Organic Framework [J].
Qu, Kai ;
Huang, Kang ;
Xu, Jipeng ;
Dai, Liheng ;
Wang, Yixing ;
Cao, Hongyan ;
Xia, Yongsheng ;
Wu, Yulin ;
Xu, Weiyi ;
Yao, Zhizhen ;
Guo, Xuhong ;
Lian, Cheng ;
Xu, Zhi .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (49)
[38]   Unveiling Unexpected Modulator-CO2 Dynamics within a Zirconium Metal-Organic Framework [J].
Rayder, Thomas M. ;
Formalik, Filip ;
Vornholt, Simon M. ;
Frank, Hilliary ;
Lee, Seryeong ;
Alzayer, Maytham ;
Chen, Zhihengyu ;
Sengupta, Debabrata ;
Islamoglu, Timur ;
Paesani, Francesco ;
Chapman, Karena W. ;
Snurr, Randall Q. ;
Farha, Omar K. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (20) :11195-11205
[39]   Metal-Organic Frameworks for CO2 Separation from Flue and Biogas Mixtures [J].
Sahoo, Rupam ;
Mondal, Supriya ;
Mukherjee, Debolina ;
Das, Madhab C. .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (45)
[40]   Enhanced Direct Air Carbon Capture on NaX Zeolite by Electric-Field Enhanced Physical Adsorption and In Situ CO2 Synergistic Effects of Cold Plasma [J].
Shen, Minghai ;
Kong, Fulin ;
Guo, Wei ;
Zuo, Zhongqi ;
Guo, Chan ;
Tong, Lige ;
Yin, Shaowu ;
Wang, Li ;
Kawi, Sibudjing ;
Chu, Paul K. ;
Ding, Yulong .
ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (49)