Ionic Hydrophobic Gates on Metal-Organic Frameworks Enable High-Purity CO2 Separation from Humid Flue Gas

被引:0
作者
Sun, Deyun [1 ]
Chen, Shangqing [1 ]
He, Miao [1 ]
Xu, Hongxue [1 ]
Sun, Yongxiang [2 ]
Shi, Lijuan [1 ]
Zeng, Hongbo [2 ]
Yi, Qun [1 ]
机构
[1] Wuhan Inst Technol, Sch Chem Engn & Pharm, Key Lab Green Chem Engn Proc, Minist Educ, Wuhan 430205, Peoples R China
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
CARBON-DIOXIDE CAPTURE; ADSORPTION; SITES; RESISTANT; CO2/N-2; STATE;
D O I
10.1021/jacs.5c02093
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Efficient extraction of high-purity CO2 from humid flue gas via adsorptive separation offers a promising and sustainable solution for carbon reduction and downstream applications. However, the coadsorption of H2O vapor and N2 from humid flue gas remains a persistent challenge that limits separation efficiency. To overcome this issue, this work introduces a novel concept of ionic hydrophobic gates on porous adsorbents, which enables one-step separation of high-purity CO2 directly from humid flue gas. By assembling hydrophobic ionic liquids and fluorine-rich terephthalaldehyde onto the surface of a metal-organic framework (MOF), this design establishes H2O barriers and CO2 channels on the outer shell while maintaining pore integrity in the core. The resulting core-shell material demonstrates exceptional CO2 adsorption capacity and an extraordinary CO2/N2 selectivity of 1780 (15/85, v/v), surpassing conventional adsorbents. Notably, dry CO2 with 99.999% purity is successfully extracted from humid flue gas (relative humidity, RH = 100%) in a single breakthrough experiment. In situ diffuse reflectance Fourier transform infrared spectroscopy (in situ DRIFTS) and density functional theory calculations reveal that fluorine-rich hydrophobic sites act as effective H2O barriers, while ionic liquid segments facilitate the transport of CO2 through hydrogen bonding and electrostatic interactions. Owing to its excellent scalability and broad compatibility with diverse MOF platforms, this ionic hydrophobic gating strategy offers a robust and versatile approach for constructing advanced gas separation materials, holding great promise for industrial applications in carbon capture, clean energy, and sustainable chemical processes.
引用
收藏
页码:24370 / 24381
页数:12
相关论文
共 58 条
[1]   Data-driven design of metal-organic frameworks for wet flue gas CO2 capture [J].
Boyd, Peter G. ;
Chidambaram, Arunraj ;
Garcia-Diez, Enrique ;
Ireland, Christopher P. ;
Daff, Thomas D. ;
Bounds, Richard ;
Gladysiak, Andrzej ;
Schouwink, Pascal ;
Moosavi, Seyed Mohamad ;
Maroto-Valer, M. Mercedes ;
Reimer, Jeffrey A. ;
Navarro, Jorge A. R. ;
Woo, Tom K. ;
Garcia, Susana ;
Stylianou, Kyriakos C. ;
Smit, Berend .
NATURE, 2019, 576 (7786) :253-+
[2]   A Data-Driven Approach to Molten Salt Synthesis of N-Rich Carbon Adsorbents for Selective CO2 Capture [J].
Burrow, James N. ;
Eichler, John E. ;
Martinez, Wuilian A. ;
Mullins, C. Buddie .
ADVANCED MATERIALS, 2024, 36 (05)
[3]   Catalysis of Transesterification by a Nonfunctionalized Metal-Organic Framework: Acido-Basicity at the External Surface of ZIF-8 Probed by FTIR and ab Initio Calculations [J].
Chizallet, Celine ;
Lazare, Sandrine ;
Bazer-Bachi, Delphine ;
Bonnier, Fabien ;
Lecocq, Vincent ;
Soyer, Emmanuel ;
Quoineaud, Anne-Agathe ;
Bats, Nicolas .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (35) :12365-12377
[4]   A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n [J].
Chui, SSY ;
Lo, SMF ;
Charmant, JPH ;
Orpen, AG ;
Williams, ID .
SCIENCE, 1999, 283 (5405) :1148-1150
[5]   Active chemisorption sites in functionalized ionic liquids for carbon capture [J].
Cui, Guokai ;
Wang, Jianji ;
Zhang, Suojiang .
CHEMICAL SOCIETY REVIEWS, 2016, 45 (15) :4307-4339
[6]  
Das R, 2025, J AM CHEM SOC, V147, P8377, DOI 10.1021/jacs.4c16131
[7]   Aluminum formate, Al(HCOO)3: An earth-abundant, scalable, and highly selective material for CO2 capture [J].
Evans, Hayden A. ;
Mullangi, Dinesh ;
Deng, Zeyu ;
Wang, Yuxiang ;
Peh, Shing Bo ;
Wei, Fengxia ;
Wang, John ;
Brown, Craig M. ;
Zhao, Dan ;
Canepa, Pieremanuele ;
Cheetham, Anthony K. .
SCIENCE ADVANCES, 2022, 8 (44)
[8]   Water Adsorption in Porous Metal-Organic Frameworks and Related Materials [J].
Furukawa, Hiroyasu ;
Gandara, Felipe ;
Zhang, Yue-Biao ;
Jiang, Juncong ;
Queen, Wendy L. ;
Hudson, Matthew R. ;
Yaghi, Omar M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2014, 136 (11) :4369-4381
[9]   Industrial carbon dioxide capture and utilization: state of the art and future challenges [J].
Gao, Wanlin ;
Liang, Shuyu ;
Wang, Rujie ;
Jiang, Qian ;
Zhang, Yu ;
Zheng, Qianwen ;
Xie, Bingqiao ;
Toe, Cui Ying ;
Zhu, Xuancan ;
Wang, Junya ;
Huang, Liang ;
Gao, Yanshan ;
Wang, Zheng ;
Jo, Changbum ;
Wang, Qiang ;
Wang, Lidong ;
Liu, Yuefeng ;
Louis, Benoit ;
Scott, Jason ;
Roger, Anne-Cecile ;
Amal, Rose ;
Heh, Hong ;
Park, Sang-Eon .
CHEMICAL SOCIETY REVIEWS, 2020, 49 (23) :8584-8686
[10]   Bioinspired Design of a Giant [Mn86] Nanocage-Based Metal-Organic Framework with Specific CO2 Binding Pockets for Highly Selective CO2 Separation [J].
Geng, Shubo ;
Xu, Hang ;
Cao, Chun-Shuai ;
Pham, Tony ;
Zhao, Bin ;
Zhang, Zhenjie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (32)