Tunable dry reforming of methane in a non-catalytic nanosecond-pulsed plasma reactor

被引:0
作者
Cameli, Fabio [1 ,2 ]
Van Geem, Kevin M. [1 ]
Stefanidis, Georgios D. [1 ,2 ]
机构
[1] Univ Ghent, Lab Chem Technol, Ghent, Belgium
[2] Natl Tech Univ Athens, Sch Chem Engn, Athens, Greece
关键词
Dry reforming of methane; Non-thermal plasma; Biogas; Hydrogen; Syngas; Electrification; DECARBONIZATION; ELECTRIFICATION; DISCHARGE;
D O I
10.1016/j.ijhydene.2025.150293
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanosecond-pulsed-discharge (NPD) plasma can effectively promote dry reforming of methane (DRM) to convert feedstock mixtures of methane (CH4) and carbon dioxide (CO2), typical of biogas streams, into syngas and C2 species through sharp energy pulses that can be regulated in amplitude and frequency to optimize energy delivery. Both continuous pulsing and grouped pulses (bursts) drive reactants' conversion by controlling the dissipated power in the discharge. The syngas composition at the outlet can be linearly tuned via the feed gas ratio, as CH4 coupling reactions and CO2 dissociation complement the DRM reaction, maintaining the correlation. CH4 and CO2 conversions follow a saturation trend with specific energy input (SEI), with maximum values of 83 % and 75 %, respectively. Nonetheless, the energy conversion efficiency (ECE) shows a non-monotonic trend with SEI, likely due to memory effects at high pulse frequencies, which promote gas breakdown at low energy. The latter conditions promote 47 % conversion of discharge energy into chemical energy, whereas higher reactants' conversions are attained at a lower efficiency (i.e., 27 %). The NPD plasma DRM process produces H2 with negative CO2 emissions when powered by wind and solar energy (i.e., -9 kgCO2 kgH2 - 1 and -7 kgCO2 kgH2 respectively), in contrast to the state-of-the-art steam methane reforming, which emits about 10 kgCO2 kgH2
引用
收藏
页数:9
相关论文
共 40 条
[1]   Greenhouse gas emission reduction and energy impact of electrifying upgraders in refineries using plasma processing technology [J].
Bhuiyan, Shariful Islam ;
Kraus, Jamie ;
Baky, Md Abdullah Hil ;
Stanich, Rollie ;
Wang, Kunpeng ;
Jemison, Howard ;
Staack, David .
SUSTAINABLE ENERGY & FUELS, 2023, 7 (09) :2178-2199
[2]  
Biogas Association World, 2022, Delivering the global methane pledge
[3]   White paper on the future of plasma science in environment, for gas conversion and agriculture [J].
Brandenburg, Ronny ;
Bogaerts, Annemie ;
Bongers, Waldo ;
Fridman, Alexander ;
Fridman, Gregory ;
Locke, Bruce R. ;
Miller, Vandana ;
Reuter, Stephan ;
Schiorlin, Milko ;
Verreycken, Tiny ;
Ostrikov, Kostya .
PLASMA PROCESSES AND POLYMERS, 2019, 16 (01)
[4]   Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier's principle [J].
Buelens, Lukas C. ;
Galvita, Vladimir V. ;
Poelman, Hilde ;
Detavernier, Christophe ;
Marin, Guy B. .
SCIENCE, 2016, 354 (6311) :449-452
[5]   Biogas composition from agricultural sources and organic fraction of municipal solid waste [J].
Calbry-Muzyka, Adelaide ;
Madi, Hossein ;
Rusch-Pfund, Florian ;
Gandiglio, Marta ;
Biollaz, Serge .
RENEWABLE ENERGY, 2022, 181 :1000-1007
[6]   Electrified methane upgrading via non-thermal plasma: Intensified single-pass ethylene yield through structured bimetallic catalyst [J].
Cameli, Fabio ;
Scapinello, Marco ;
Delikonstantis, Evangelos ;
Stefanidis, Georgios D. .
CHEMICAL ENGINEERING AND PROCESSING-PROCESS INTENSIFICATION, 2024, 204
[7]   Intensification of plasma-catalytic processes via additive manufacturing. Application to non-oxidative methane coupling to ethylene [J].
Cameli, Fabio ;
Scapinello, Marco ;
Delikonstantis, Evangelos ;
Franchi, Federico Sascha ;
Ambrosetti, Matteo ;
Castoldi, Lidia ;
Groppi, Gianpiero ;
Tronconi, Enrico ;
Stefanidis, Georgios D. .
CHEMICAL ENGINEERING JOURNAL, 2024, 482
[8]   Plasma catalytic technology for CH4 and CO2 conversion: A review highlighting fluidized-bed plasma reactor [J].
Chen, Xiaozhong ;
Kim, Hyun-Ha ;
Nozaki, Tomohiro .
PLASMA PROCESSES AND POLYMERS, 2024, 21 (01)
[9]  
Delikonstantis E, 2017, Simulation and Evaluation, Energies
[10]   Valorizing the Steel Industry Off-Gases: Proof of Concept and Plantwide Design of an Electrified and Catalyst-Free Reverse Water-Gas-Shift-Based Route to Methanol [J].
Delikonstantis, Evangelos ;
Vettas, Panagiotis ;
Cameli, Fabio ;
Scapinello, Marco ;
Nikiforov, Anton ;
Marin, Guy B. ;
Van Geem, Kevin M. ;
Stefanidis, Georgios D. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2023, 57 (40) :14961-14972