Navigating the value proposition of artificial intelligence in cardiovascular disease prevention

被引:0
作者
Shah, Anand [1 ]
机构
[1] Univ North Carolina Chapel Hill, Sch Med, Chapel Hill, NC USA
来源
DIGITAL HEALTH | 2025年 / 11卷
关键词
Cardiovascular disease; artificial intelligence; cardiovascular; cardiology; prevention;
D O I
10.1177/20552076251357409
中图分类号
R19 [保健组织与事业(卫生事业管理)];
学科分类号
摘要
Artificial intelligence (AI) is reshaping healthcare, influencing everything from administrative workflows to direct patient care. It holds promise in addressing the leading cause of death in the United States and a significant driver of costs - cardiovascular disease (CVD). Traditional reimbursement models are slow to incorporate AI. This article explores alternative financial incentives for AI in CVD prevention in fee-for-service (FFS) and value-based care models across four domains - risk prediction, diagnostics, imaging, clinical decision support, and administrative strategies - where AI may provide indirect revenue generation, cost savings, and efficiency gains. Under FFS, AI can enhance revenue by driving appropriate healthcare utilization, improving billing accuracy, and streamlining administrative workflows. In value-based models, AI aligns with incentives to prevent disease progression, reduce hospitalizations, and optimize shared savings. While AI-powered tools offer a compelling financial value proposition in cardiovascular prevention, their real-world adoption and impact will depend on successful clinical validation and seamless integration into existing workflows. The future of AI in cardiovascular care depends on a shift in reimbursement models, regulatory adaptation, and continued evidence generation demonstrating cost-effectiveness and improved outcomes. As healthcare transitions toward value-based care, AI has the potential to be a catalyst for better prevention and long-term cost savings, but only if its business case is strategically developed and implemented.
引用
收藏
页数:4
相关论文
共 20 条
[1]  
[Anonymous], Artificial Intelligence Based On-Board Image
[2]  
[Anonymous], Hierarchical Condition Category Coding
[3]   Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association [J].
Armoundas, Antonis A. ;
Narayan, Sanjiv M. ;
Arnett, Donna K. ;
Spector-Bagdady, Kayte ;
Bennett, Derrick A. ;
Celi, Leo Anthony ;
Friedman, Paul A. ;
Gollob, Michael H. ;
Hall, Jennifer L. ;
Kwitek, Anne E. ;
Lett, Elle ;
Menon, Bijoy K. ;
Sheehan, Katherine A. ;
Al-Zaiti, Salah S. .
CIRCULATION, 2024, 149 (14) :e1028-e1050
[4]   Artificial intelligence in preventive cardiology [J].
El Sherbini, Adham ;
Rosenson, Robert S. ;
Al Rifai, Mahmoud ;
Virk, Hafeez Ul Hassan ;
Wang, Zhen ;
Virani, Salim ;
Glicksberg, Benjamin S. ;
Lavie, Carl J. ;
Krittanawong, Chayakrit .
PROGRESS IN CARDIOVASCULAR DISEASES, 2024, 84 :76-89
[5]   Automated coronary calcium scoring using deep learning with multicenter external validation [J].
Eng, David ;
Chute, Christopher ;
Khandwala, Nishith ;
Rajpurkar, Pranav ;
Long, Jin ;
Shleifer, Sam ;
Khalaf, Mohamed H. ;
Sandhu, Alexander T. ;
Rodriguez, Fatima ;
Maron, David J. ;
Seyyedi, Saeed ;
Marin, Daniele ;
Golub, Ilana ;
Budoff, Matthew ;
Kitamura, Felipe ;
Takahashi, Marcelo Straus ;
Filice, Ross W. ;
Shah, Rajesh ;
Mongan, John ;
Kallianos, Kimberly ;
Langlotz, Curtis P. ;
Lungren, Matthew P. ;
Ng, Andrew Y. ;
Patel, Bhavik N. .
NPJ DIGITAL MEDICINE, 2021, 4 (01)
[6]   Development, evaluation and validation of machine learning models to predict hospitalizations of patients with coronary artery disease within the next 12 months [J].
Ermak, Andrey D. ;
Gavrilov, Denis V. ;
Novitskiy, Roman E. ;
Gusev, Alexander V. ;
Andreychenko, Anna E. .
INTERNATIONAL JOURNAL OF MEDICAL INFORMATICS, 2024, 188
[7]   Personalized prediction of incident hospitalization for cardiovascular disease in patients with hypertension using machine learning [J].
Feng, Yuanchao ;
Leung, Alexander A. ;
Lu, Xuewen ;
Liang, Zhiying ;
Quan, Hude ;
Walker, Robin L. .
BMC MEDICAL RESEARCH METHODOLOGY, 2022, 22 (01)
[8]   Reducing echocardiographic examination time through routine use of fully automated software: a comparative study of measurement and report creation time [J].
Hirata, Yukina ;
Nomura, Yuka ;
Saijo, Yoshihito ;
Sata, Masataka ;
Kusunose, Kenya .
JOURNAL OF ECHOCARDIOGRAPHY, 2024, 22 (03) :162-170
[9]   Artificial intelligence for patient scheduling in the real-world health care setting: A metanarrative review [J].
Knight, Dacre R. T. ;
Aakre, Christopher A. ;
Anstine, Christopher, V ;
Munipalli, Bala ;
Biazar, Parisa ;
Mitri, Ghada ;
Valery, Jose Raul ;
Brigham, Tara ;
Niazi, Shehzad K. ;
Perlman, Adam I. ;
Halamka, John D. ;
Abu Dabrh, Abd Moain .
HEALTH POLICY AND TECHNOLOGY, 2023, 12 (04)
[10]   Global Effect of Modifiable Risk Factors on Cardiovascular Disease and Mortality [J].
Magnussen, Christina ;
Ojeda, Francisco M. ;
Leong, Darryl P. ;
Alegre-Diaz, Jesus ;
Amouyel, Philippe ;
Aviles-Santa, Larissa ;
De Bacquer, Dirk ;
Ballantyne, Christie M. ;
Bernabe-Ortiz, Antonio ;
Bobak, Martin ;
Brenner, Hermann ;
Carrillo-Larco, Rodrigo M. ;
de Lemos, James ;
Dobson, Annette ;
Dorr, Marcus ;
Donfrancesco, Chiara ;
Drygas, Wojciech ;
Dullaart, Robin P. ;
Engstrom, Gunnar ;
Ferrario, Marco M. ;
Ferrieres, Jean ;
de Gaetano, Giovanni ;
Goldbourt, Uri ;
Gonzalez, Clicerio ;
Grassi, Guido ;
Hodge, Allison M. ;
Hveem, Kristian ;
Iacoviello, Licia ;
Ikram, M. Kamran ;
Irazola, Vilma ;
Jobe, Modou ;
Jousilahti, Pekka ;
Kaleebu, Pontiano ;
Kavousi, Maryam ;
Kee, Frank ;
Khalili, Davood ;
Koenig, Wolfgang ;
Kontsevaya, Anna ;
Kuulasmaa, Kari ;
Lackner, Karl J. ;
Leistner, David M. ;
Lind, Lars ;
Linneberg, Allan ;
Lorenz, Thiess ;
Lyngbakken, Magnus Nakrem ;
Malekzadeh, Reza ;
Malyutina, Sofia ;
Mathiesen, Ellisiv B. ;
Melander, Olle ;
Metspalu, Andres .
NEW ENGLAND JOURNAL OF MEDICINE, 2023, 389 (14) :1273-1285