Hyperparameter Tuning for Self-Organizing Maps

被引:0
作者
Guerin, Axel [1 ]
Chauvet, Pierre [1 ,2 ]
Saubion, Frederic [1 ]
机构
[1] Univ dAngers, LERIA, Angers, France
[2] Univ Catholique lOuest, Angers, France
来源
2024 CONFERENCE ON AI, SCIENCE, ENGINEERING, AND TECHNOLOGY, AIXSET | 2024年
关键词
Self-Organizing Maps; Parameter tuning;
D O I
10.1109/AIxSET62544.2024.00044
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Self-Organizing Maps (SOMs) are widely used across a wide range of domains, including visualization, feature map generation, pattern recognition, and classification. Despite their simplicity, SOMs are able to effectively reduce the dimensionality of data while preserving its inherent structure, making it easier to analyze and interpret complex datasets. In this paper, we propose a methodology for hyperparameter tuning in SOMs, highlighting the importance of key parameters and optimization techniques to enhance SOMs performance. We benefit from SMAC, a powerful tool for optimizing SOMs parameters. Our experimental results, based on a real case study, demonstrate that careful tuning of these parameters is crucial for achieving optimal convergence and avoiding overfitting or excessive computational costs. By implementing these advanced tuning methods, it is possible to significantly enhance the accuracy, efficiency, and applicability of SOMs in diverse data analysis contexts.
引用
收藏
页码:228 / 235
页数:8
相关论文
共 23 条
[1]   Optimizing Self-Organizing Maps Parameters Using Genetic Algorithm: A Simple Case Study [J].
Ahmed, Reham Fathy M. ;
Salama, Cherif ;
Mahdi, Hani .
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED INTELLIGENT SYSTEMS AND INFORMATICS 2019, 2020, 1058 :3-12
[2]   Determinants of the European Sovereign Debt Crisis: Application of Logit, Panel Markov Regime Switching Model and Self Organizing Maps [J].
Allegret, Jean-Pierre ;
Cergibozan, Raif .
ENTROPY, 2023, 25 (07)
[3]   New Hardware Architecture for Self-Organizing Map Used for Color Vector Quantization [J].
Ben Khalifa, Khaled ;
Blaiech, Ahmed Ghazi ;
Abadi, Mehdi ;
Bedoui, Mohamed Hedi .
JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2020, 29 (01)
[4]   AW-SOM, an Algorithm for High-Speed Learning in Hardware Self-Organizing Maps [J].
Cardarilli, Gian Carlo ;
Di Nunzio, Luca ;
Fazzolari, Rocco ;
Re, Marco ;
Spano, Sergio .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2020, 67 (02) :380-384
[5]  
Chaudhary V, 2015, J INF SCI ENG, V31, P387
[6]  
da Silva Y.E.D., 2018, Advances in Intelligent Systems and Computing, V2, P295, DOI [10.1007/978-3-030-01057-7 24, DOI 10.1007/978-3-030-01057-724]
[7]   Mixing numerical and categorical data in a Self-Organizing Map by means of frequency neurons [J].
del Coso, Carmelo ;
Fustes, Diego ;
Dafonte, Carlos ;
Novoa, Francisco J. ;
Rodriguez-Pedreira, Jose M. ;
Arcay, Bernardino .
APPLIED SOFT COMPUTING, 2015, 36 :246-254
[8]  
Forest F., 2020, arXiv, DOI DOI 10.48550/ARXIV.2011.05847
[9]   Classifying Model-View-Controller Software Applications Using Self-Organizing Maps [J].
Guaman, Daniel ;
Delgado, Soledad ;
Perez, Jennifer .
IEEE ACCESS, 2021, 9 :45201-45229
[10]  
Hamel L., 2018, Advances in Intelligent Systems and Computing, V869, P805, DOI [10.1007/978-3-030-01057-7 60, DOI 10.1007/978-3-030-01057-760]