Temporal Coherence or Temporal Motion: Which Is More Critical for Video-Based Person Re-identification?

被引:66
作者
Chen, Guangyi [1 ,2 ,3 ]
Rao, Yongming [1 ,2 ,3 ]
Lu, Jiwen [1 ,2 ,3 ]
Zhou, Jie [1 ,2 ,3 ,4 ]
机构
[1] Tsinghua Univ, Dept Automat, Beijing, Peoples R China
[2] State Key Lab Intelligent Technol & Syst, Beijing, Peoples R China
[3] Beijing Natl Res Ctr Informat Sci & Technol, Beijing, Peoples R China
[4] Tsinghua Univ, Tsinghua Shenzhen Int Grad Sch, Beijing, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT VIII | 2020年 / 12353卷
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Video-based person re-identification; Temporal coherence; Feature augmentation; Adversarial learning; ATTENTION;
D O I
10.1007/978-3-030-58598-3_39
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video-based person re-identification aims to match pedestrians with the consecutive video sequences. While a rich line of work focuses solely on extracting the motion features from pedestrian videos, we show in this paper that the temporal coherence plays a more critical role. To distill the temporal coherence part of video representation from frame representations, we propose a simple yet effective Adversarial Feature Augmentation (AFA) method, which highlights the temporal coherence features by introducing adversarial augmented temporal motion noise. Specifically, we disentangle the video representation into the temporal coherence and motion parts and randomly change the scale of the temporal motion features as the adversarial noise. The proposed AFA method is a general lightweight component that can be readily incorporated into various methods with negligible cost. We conduct extensive experiments on three challenging datasets including MARS, iLIDS-VID, and DukeMTMC-VideoReID, and the experimental results verify our argument and demonstrate the effectiveness of the proposed method.
引用
收藏
页码:660 / 676
页数:17
相关论文
共 54 条
[1]   Video Person Re-identification with Competitive Snippet-similarity Aggregation and Co-attentive Snippet Embedding [J].
Chen, Dapeng ;
Li, Hongsheng ;
Xiao, Tong ;
Yi, Shuai ;
Wang, Xiaogang .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :CP1-CP99
[2]   Self-Critical Attention Learning for Person Re-Identification [J].
Chen, Guangyi ;
Lin, Chunze ;
Ren, Liangliang ;
Lu, Jiwen ;
Zhou, Jie .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :9636-9645
[3]   Learning Recurrent 3D Attention for Video-Based Person Re-Identification [J].
Chen, Guangyi ;
Lu, Jiwen ;
Yang, Ming ;
Zhou, Jie .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 :6963-6976
[4]   Spatial-Temporal Attention-Aware Learning for Video-Based Person Re-Identification [J].
Chen, Guangyi ;
Lu, Jiwen ;
Yang, Ming ;
Zhou, Jie .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (09) :4192-4205
[5]   Video Person Re-Identification by Temporal Residual Learning [J].
Dai, Ju ;
Zhang, Pingping ;
Wang, Dong ;
Lu, Huchuan ;
Wang, Hongyu .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (03) :1366-1377
[6]  
Dehghan A, 2015, PROC CVPR IEEE, P4091, DOI 10.1109/CVPR.2015.7299036
[7]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[8]   SlowFast Networks for Video Recognition [J].
Feichtenhofer, Christoph ;
Fan, Haoqi ;
Malik, Jitendra ;
He, Kaiming .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :6201-6210
[9]   Object Detection with Discriminatively Trained Part-Based Models [J].
Felzenszwalb, Pedro F. ;
Girshick, Ross B. ;
McAllester, David ;
Ramanan, Deva .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) :1627-1645
[10]  
Frid-Adar M, 2018, I S BIOMED IMAGING, P289, DOI 10.1109/ISBI.2018.8363576