Muscle-Driven prognostication in gastric cancer: A multicenter deep learning framework integrating Iliopsoas and erector spinae radiomics for 5-Year survival prediction

被引:0
作者
Hong, Yuan [1 ]
Zhang, Peng [1 ]
Teng, Zhijun [1 ]
Cheng, Kang [2 ]
Zhang, Zimo [2 ]
Cheng, Yixian [1 ]
Cao, Guodong [1 ]
Chen, Bo [1 ,3 ]
机构
[1] Anhui Med Univ, Affiliated Hosp 1, Dept Gen Surg, 218 Jixi Rd, Hefei 230022, Peoples R China
[2] Anhui Med Univ, Dept Clin Med Coll 1, Hefei 230022, Peoples R China
[3] Peoples Hosp Hanshan Cty, Maanshan 238101, Peoples R China
关键词
Sarcopenia; Gastric cancer; Radical gastrectomy; Deep learning; SKELETAL-MUSCLE; SARCOPENIA; IMAGES;
D O I
10.1038/s41598-025-09083-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This study developed a 5-year survival prediction model for gastric cancer patients by combining radiomics and deep learning, focusing on CT-based 2D and 3D features of the iliopsoas and erector spinae muscles. Retrospective data from 705 patients across two centers were analyzed, with clinical variables assessed via Cox regression and radiomic features extracted using deep learning. The 2D model outperformed the 3D approach, leading to feature fusion across five dimensions, optimized via logistic regression. Results showed no significant association between clinical baseline characteristics and survival, but the 2D model demonstrated strong prognostic performance (AUC similar to 0.8), with attention heatmaps emphasizing spinal muscle regions. The 3D model underperformed due to irrelevant data. The final integrated model achieved stable predictive accuracy, confirming the link between muscle mass and survival. This approach advances precision medicine by enabling personalized prognosis and exploring 3D imaging feasibility, offering insights for gastric cancer research.
引用
收藏
页数:18
相关论文
共 43 条
[1]   Theranostic Approaches for Gastric Cancer: An Overview of In Vitro and In Vivo Investigations [J].
Basirinia, Ghazal ;
Ali, Muhammad ;
Comelli, Albert ;
Sperandeo, Alessandro ;
Piana, Sebastiano ;
Alongi, Pierpaolo ;
Longo, Costanza ;
Di Raimondo, Domenico ;
Tuttolomondo, Antonino ;
Benfante, Viviana .
CANCERS, 2024, 16 (19)
[2]   Impact of sarcopenia on daily functioning: a cross-sectional study among older inpatients [J].
Bertschi, Dominic ;
Kiss, Caroline M. ;
Beerli, Nadine ;
Mauthner, Oliver ;
Kressig, Reto W. .
AGING CLINICAL AND EXPERIMENTAL RESEARCH, 2022, 34 (09) :2041-2046
[3]   A Predictive System to Classify Preoperative Grading of Rectal Cancer Using Radiomics Features [J].
Canfora, Ilaria ;
Cutaia, Giuseppe ;
Marciano, Marco ;
Calamia, Mauro ;
Faraone, Roberta ;
Cannella, Roberto ;
Benfante, Viviana ;
Comelli, Albert ;
Guercio, Giovanni ;
Giuseppe, Lo Re ;
Salvaggio, Giuseppe .
IMAGE ANALYSIS AND PROCESSING, ICIAP 2022 WORKSHOPS, PT I, 2022, 13373 :431-440
[4]   Transformer-based skeletal muscle deep-learning model for survival prediction in gastric cancer patients after curative resection [J].
Chen, Qiuying ;
Jian, Lian ;
Xiao, Hua ;
Zhang, Bin ;
Yu, Xiaoping ;
Lai, Bo ;
Wu, Xuewei ;
You, Jingjing ;
Jin, Zhe ;
Yu, Li ;
Zhang, Shuixing .
GASTRIC CANCER, 2025, 28 (04) :684-695
[5]   Sarcopenia: European consensus on definition and diagnosis [J].
Cruz-Jentoft, Alfonso J. ;
Baeyens, Jean Pierre ;
Bauer, Juergen M. ;
Boirie, Yves ;
Cederholm, Tommy ;
Landi, Francesco ;
Martin, Finbarr C. ;
Michel, Jean-Pierre ;
Rolland, Yves ;
Schneider, Stephane M. ;
Topinkova, Eva ;
Vandewoude, Maurits ;
Zamboni, Mauro .
AGE AND AGEING, 2010, 39 (04) :412-423
[6]   A CT-based deep learning radiomics nomogram for predicting the response to neoadjuvant chemotherapy in patients with locally advanced gastric cancer: A multicenter cohort study [J].
Cui, Yanfen ;
Zhang, Jiayi ;
Li, Zhenhui ;
Wei, Kaikai ;
Lei, Ye ;
Ren, Jialiang ;
Wu, Lei ;
Shi, Zhenwei ;
Meng, Xiaochun ;
Yang, Xiaotang ;
Gao, Xin .
ECLINICALMEDICINE, 2022, 46
[7]   Evolving role of FDG-PET/CT in prognostic evaluation of resectable gastric cancer [J].
De Raffele, Emilio ;
Mirarchi, Mariateresa ;
Cuicchi, Dajana ;
Lecce, Ferdinando ;
Cola, Bruno .
WORLD JOURNAL OF GASTROENTEROLOGY, 2017, 23 (38) :6923-6926
[8]   International Clinical Practice Guidelines for Sarcopenia (ICFSR): Screening, Diagnosis and Management [J].
Dent, E. ;
Morley, J. E. ;
Cruz-Jentoft, A. J. ;
Arai, H. ;
Kritchevsky, S. B. ;
Guralnik, J. ;
Bauer, J. M. ;
Pahor, M. ;
Clark, B. C. ;
Cesari, M. ;
Ruiz, J. ;
Sieber, C. C. ;
Aubertin-Leheudre, M. ;
Waters, D. L. ;
Visvanathan, R. ;
Landi, F. ;
Villareal, D. T. ;
Fielding, R. ;
Won, C. W. ;
Theou, O. ;
Martin, F. C. ;
Dong, B. ;
Woo, J. ;
Flicker, L. ;
Ferrucci, L. ;
Merchant, R. A. ;
Cao, L. ;
Cederholm, T. ;
Ribeiro, S. M. L. ;
Rodriguez-Manas, L. ;
Anker, S. D. ;
Lundy, J. ;
Gutierrez Robledo, L. M. ;
Bautmans, I. ;
Aprahamian, I. ;
Schols, J. M. G. A. ;
Izquierdo, M. ;
Vellas, B. .
JOURNAL OF NUTRITION HEALTH & AGING, 2018, 22 (10) :1148-1161
[9]   Identifying sarcopenia in advanced non-small cell lung cancer patients using skeletal muscleCTradiomics and machine learning [J].
Dong, Xing ;
Dan, Xu ;
Ao Yawen ;
Xu Haibo ;
Huan, Li ;
Tu Mengqi ;
Chen Linglong ;
Zhao, Ruan .
THORACIC CANCER, 2020, 11 (09) :2650-2659
[10]   Metabolic Reprogramming and Risk Stratification of Hepatocellular Carcinoma Studied by Using Gas Chromatography-Mass Spectrometry-Based Metabolomics [J].
Fang, Chengnan ;
Wang, Hui ;
Lin, Zhikun ;
Liu, Xinyu ;
Dong, Liwei ;
Jiang, Tianyi ;
Tan, Yexiong ;
Ning, Zhen ;
Ye, Yaorui ;
Tan, Guang ;
Xu, Guowang .
CANCERS, 2022, 14 (01)