Testing linearity in semi-functional partially linear regression models

被引:0
作者
Feng, Yongzhen [1 ]
Li, Jie [2 ,3 ]
Song, Xiaojun [4 ,5 ]
机构
[1] Beijing Technol & Business Univ, Sch Math & Stat, Beijing 100048, Peoples R China
[2] Renmin Univ China, Ctr Appl Stat, Sch Stat, Beijing 100872, Peoples R China
[3] Renmin Univ China, Inst Adv Social Sci Shenzhen, Govt Stat Modernizat Res Ctr, Beijing 100872, Peoples R China
[4] Peking Univ, Dept Business Stat & Econometr, Guanghua Sch Management, Beijing 100871, Peoples R China
[5] Peking Univ, Ctr Stat Sci, Beijing 100871, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Functional data; Random projections; Residual marked empirical process; Semi-functional partially linear regression models; Wild bootstrap; OF-FIT TESTS; SPECIFICATION TESTS; BOOTSTRAP; PREDICTION; CHECKS;
D O I
10.1007/s11749-025-00979-5
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper proposes a Kolmogorov-Smirnov-type statistic and a Cram & eacute;r-von Mises-type statistic to test linearity in semi-functional partially linear regression models. Our test statistics are based on a residual marked empirical process indexed by a randomly projected functional covariate, which can circumvent the "curse of dimensionality" caused by the functional covariate. The asymptotic properties of the proposed test statistics under the null, the fixed alternative and a sequence of local alternatives converging to the null at the parametric rate are established. A straightforward wild bootstrap procedure is suggested to estimate the critical values that are required to carry out the tests in practical applications. Results from an extensive simulation study show that our tests perform reasonably well in finite samples. Finally, we apply our tests to the Tecator and AEMET data sets to check whether the assumption of linearity is supported by these data sets.
引用
收藏
页数:29
相关论文
共 38 条
[1]   Bootstrap in semi-functional partial linear regression under dependence [J].
Aneiros, German ;
Rana, Paula ;
Vieu, Philippe ;
Vilar, Juan .
TEST, 2018, 27 (03) :659-679
[2]   Nonparametric time series prediction:: A semi-functional partial linear modeling [J].
Aneiros-Perez, German ;
Vieu, Philippe .
JOURNAL OF MULTIVARIATE ANALYSIS, 2008, 99 (05) :834-857
[3]   Semi-functional partial linear regression [J].
Aneiros-Perez, German ;
Vieu, Philippe .
STATISTICS & PROBABILITY LETTERS, 2006, 76 (11) :1102-1110
[4]  
Benjamini Y, 2001, ANN STAT, V29, P1165
[5]   SOME GLOBAL MEASURES OF DEVIATIONS OF DENSITY-FUNCTION ESTIMATES [J].
BICKEL, PJ ;
ROSENBLA.M .
ANNALS OF STATISTICS, 1973, 1 (06) :1071-1095
[6]   Robust estimators in semi-functional partial linear regression models [J].
Boente, Graciela ;
Vahnovan, Alejandra .
JOURNAL OF MULTIVARIATE ANALYSIS, 2017, 154 :59-84
[7]   Prediction in functional linear regression [J].
Cai, T. Tony ;
Hall, Peter .
ANNALS OF STATISTICS, 2006, 34 (05) :2159-2179
[8]   Testing hypotheses in the functional linear model [J].
Cardot, H ;
Ferraty, F ;
Mas, A ;
Sarda, P .
SCANDINAVIAN JOURNAL OF STATISTICS, 2003, 30 (01) :241-255
[9]   CLT in functional linear regression models [J].
Cardot, Herve ;
Mas, Andre ;
Sarda, Pascal .
PROBABILITY THEORY AND RELATED FIELDS, 2007, 138 (3-4) :325-361
[10]   GOODNESS-OF-FIT TESTS FOR THE FUNCTIONAL LINEAR MODEL BASED ON RANDOMLY PROJECTED EMPIRICAL PROCESSES [J].
Cuesta-Albertos, Juan A. ;
Garcia-Portugues, Eduardo ;
Febrero-Bande, Manuel ;
Gonzalez-Manteiga, Wenceslao .
ANNALS OF STATISTICS, 2019, 47 (01) :439-467