Discrete Quaternion Offset Linear Canonical Transform and Its Application

被引:0
作者
Liu, Jingjing [1 ,2 ]
Zhang, Feng [1 ,2 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Beijing Key Lab Fract Signals & Syst, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Quaternion algebra; Quaternion Fourier transform; Discrete offset linear canonical transform; Quaternion offset linear canonical transform; Color image encryption; BAND-LIMITED SIGNALS; FOURIER-TRANSFORM; FRACTIONAL FOURIER; UNCERTAINTY PRINCIPLES; GYRATOR TRANSFORM; CONVOLUTION; EIGENFUNCTIONS; WATERMARKING; DOMAIN;
D O I
10.1007/s00034-025-03208-4
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The offset linear canonical transform (OLCT) extends the linear canonical transform (LCT) by introducing additional offset parameters. These parameters allow the OLCT to perform more flexible operations such as shifts in both time and frequency domains. In this paper, we propose the discrete quaternion offset linear canonical transform (DQOLCT) using quaternion algebra. We explore the fundamental properties of 2D DQOLCT, including the reconstruction formula, the Parseval theorem, the convolution theorem, and the correlation theorem. We also derive an efficient computational method for the 2D DQOLCT. Finally, we demonstrate a new image encryption scheme based on the DQOLCT, which combines with the double random phase encoding (DRPE) and the generalized Arnold transform. Experimental results and security analysis demonstrate the method's feasibility and robustness.
引用
收藏
页数:34
相关论文
共 51 条
[1]   OPTICAL OPERATIONS ON WAVE-FUNCTIONS AS THE ABELIAN SUBGROUPS OF THE SPECIAL AFFINE FOURIER TRANSFORMATION [J].
ABE, S ;
SHERIDAN, JT .
OPTICS LETTERS, 1994, 19 (22) :1801-1803
[2]   Securing color information using Arnold transform in gyrator transform domain [J].
Abuturab, Muhammad Rafiq .
OPTICS AND LASERS IN ENGINEERING, 2012, 50 (05) :772-779
[3]   Properties of the linear canonical integral transformation [J].
Alieva, Tatiana ;
Bastiaans, Martin J. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2007, 24 (11) :3658-3665
[4]   Two-Dimensional Quaternion Linear Canonical Transform: Properties, Convolution, Correlation, and Uncertainty Principle [J].
Bahri, Mawardi ;
Ashino, Ryuichi .
JOURNAL OF MATHEMATICS, 2019, 2019
[5]   Convolution and correlation theorems for Wigner-Ville distribution associated with the quaternion offset linear canonical transform Convolution and correlation theorems for WVD associated with the QOLCT [J].
Bhat, M. Younus ;
Dar, Aamir H. .
SIGNAL IMAGE AND VIDEO PROCESSING, 2022, 16 (05) :1235-1242
[6]   Quaternionic Linear Canonical Wave Packet Transform [J].
Bhat, Younis Ahmad ;
Sheikh, N. A. .
ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2022, 32 (04)
[7]  
Chan WL, 2004, 2004 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL III, PROCEEDINGS, P996
[8]   Multiple-parameter fractional quaternion Fourier transform and its application in colour image encryption [J].
Chen, Beijing ;
Yu, Ming ;
Tian, Yuhang ;
Li, Leida ;
Wang, Dingcheng ;
Sun, Xingming .
IET IMAGE PROCESSING, 2018, 12 (12) :2238-2249
[9]   Full 4-D quaternion discrete Fourier transform based watermarking for color images [J].
Chen, Beijing ;
Coatrieux, Gouenou ;
Chen, Gang ;
Sun, Xingming ;
Coatrieux, Jean Louis ;
Shu, Huazhong .
DIGITAL SIGNAL PROCESSING, 2014, 28 :106-119
[10]   Color image encryption based on the affine transform and gyrator transform [J].
Chen, Hang ;
Du, Xiaoping ;
Liu, Zhengjun ;
Yang, Chengwei .
OPTICS AND LASERS IN ENGINEERING, 2013, 51 (06) :768-775