Maintaining Discrimination and Fairness in Class Incremental Learning

被引:304
作者
Zhao, Bowen [1 ,2 ]
Xiao, Xi [1 ,2 ]
Gan, Guojun [3 ]
Zhang, Bin [2 ]
Xia, Shu-Tao [1 ,2 ]
机构
[1] Tsinghua Univ, Beijing, Peoples R China
[2] Peng Cheng Lab, Shenzhen, Peoples R China
[3] Univ Connecticut, Storrs, CT USA
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR42600.2020.01322
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks (DNNs) have been applied in class incremental learning, which aims to solve common real-world problems of learning new classes continually. One drawback of standard DNNs is that they are prone to catastrophic forgetting. Knowledge distillation (KD) is a commonly used technique to alleviate this problem. In this paper, we demonstrate it can indeed help the model to output more discriminative results within old classes. However, it cannot alleviate the problem that the model tends to classify objects into new classes, causing the positive effect of KD to be hidden and limited. We observed that an important factor causing catastrophic forgetting is that the weights in the last fully connected (FC) layer are highly biased in class incremental learning. In this paper, we propose a simple and effective solution motivated by the aforementioned observations to address catastrophic forgetting. Firstly, we utilize KD to maintain the discrimination within old classes. Then, to further maintain the fairness between old classes and new classes, we propose Weight Aligning (WA) that corrects the biased weights in the FC layer after normal training process. Unlike previous work, WA does not require any extra parameters or a validation set in advance, as it utilizes the information provided by the biased weights themselves. The proposed method is evaluated on ImageNet-1000, ImageNet-100, and CIFAR-100 under various settings. Experimental results show that the proposed method can effectively alleviate catastrophic forgetting and significantly outperform state-of-the-art methods.
引用
收藏
页码:13205 / 13214
页数:10
相关论文
共 40 条
[1]   Memory Aware Synapses: Learning What (not) to Forget [J].
Aljundi, Rahaf ;
Babiloni, Francesca ;
Elhoseiny, Mohamed ;
Rohrbach, Marcus ;
Tuytelaars, Tinne .
COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 :144-161
[2]  
[Anonymous], 2017, P INT C LEARN REPR
[3]   IL2M: Class Incremental Learning With Dual Memory [J].
Belouadah, Eden ;
Popescu, Adrian .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :583-592
[4]   A systematic study of the class imbalance problem in convolutional neural networks [J].
Buda, Mateusz ;
Maki, Atsuto ;
Mazurowski, Maciej A. .
NEURAL NETWORKS, 2018, 106 :249-259
[5]   End-to-End Incremental Learning [J].
Castro, Francisco M. ;
Marin-Jimenez, Manuel J. ;
Guil, Nicolas ;
Schmid, Cordelia ;
Alahari, Karteek .
COMPUTER VISION - ECCV 2018, PT XII, 2018, 11216 :241-257
[6]  
Farquhar S, 2019, ARXIV
[7]   Catastrophic forgetting in connectionist networks [J].
French, RM .
TRENDS IN COGNITIVE SCIENCES, 1999, 3 (04) :128-135
[8]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[9]  
Guo, 2017, ARXIV
[10]  
He K., 2016, ARXIV