Predicting task-related brain activity from resting-state brain dynamics with fMRI Transformer

被引:0
作者
Kwon, Junbeom [1 ]
Seo, Jungwoo [1 ]
Wang, Heehwan [1 ]
Moon, Taesup [1 ]
Yoo, Shinjae [2 ]
Cha, Jiook [1 ]
机构
[1] Seoul Natl Univ, Seoul, South Korea
[2] Brookhaven Natl Lab, Upton, NY USA
来源
IMAGING NEUROSCIENCE | 2025年 / 3卷
基金
新加坡国家研究基金会;
关键词
resting-state fMRI; deep learning; task activation prediction; individual differences; INDEPENDENT COMPONENT ANALYSIS; INDIVIDUAL-DIFFERENCES; ACTIVATION;
D O I
10.1162/imag_a_00440
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Accurate prediction of the brain's task reactivity from resting-state functional magnetic resonance imaging (fMRI) data remains a significant challenge in neuroscience. Traditional statistical approaches often fail to capture the complex, nonlinear spatiotemporal patterns of brain function. This study introduces SwiFUN (Swin fMRI UNet Transformer), a novel deep learning framework designed to predict 3D task activation maps directly from resting-state fMRI scans. SwiFUN leverages advanced techniques such as shifted window-based self-attention, which helps to understand complex patterns by focusing on varying parts of the data sequentially, and a contrastive learning strategy to better capture individual differences among subjects. When applied to predicting emotion-related task activation in adults (UK Biobank, n = 7,038) and children (ABCD, n = 4,944), SwiFUN consistently achieved higher overall prediction accuracy than existing methods across all contrasts; it demonstrated an improvement of up to 27% for the FACES-PLACES contrast in ABCD data. The resulting task activation maps revealed individual differences across cortical regions associated with sex, age, and depressive symptoms. This scalable, transformer-based approach potentially reduces the need for task-based fMRI in clinical settings, marking a promising direction for future neuroscience and clinical research that enhances our ability to understand and predict brain function.
引用
收藏
页数:16
相关论文
共 57 条
[1]   Image processing and Quality Control for the first 10,000 brain imaging datasets from UK Biobank [J].
Alfaro-Almagro, Fidel ;
Jenkinson, Mark ;
Bangerter, Neal K. ;
Andersson, Jesper L. R. ;
Griffanti, Ludovica ;
Douaud, Gwenaelle ;
Sotiropoulos, Stamatios N. ;
Jbabdi, Saad ;
Hernandez-Fernandez, Moises ;
Vallee, Emmanuel ;
Vidaurre, Diego ;
Webster, Matthew ;
McCarthy, Paul ;
Rorden, Christopher ;
Daducci, Alessandro ;
Alexander, Daniel C. ;
Zhang, Hui ;
Dragonu, Iulius ;
Matthews, Paul M. ;
Miller, Karla L. ;
Smith, Stephen M. .
NEUROIMAGE, 2018, 166 :400-424
[2]   Function in the human connectome: Task-fMRI and individual differences in behavior [J].
Barch, Deanna M. ;
Burgess, Gregory C. ;
Harms, Michael P. ;
Petersen, Steven E. ;
Schlaggar, Bradley L. ;
Corbetta, Maurizio ;
Glasser, Matthew F. ;
Curtiss, Sandra ;
Dixit, Sachin ;
Feldt, Cindy ;
Nolan, Dan ;
Bryant, Edward ;
Hartley, Tucker ;
Footer, Owen ;
Bjork, James M. ;
Poldrack, Russ ;
Smith, Steve ;
Johansen-Berg, Heidi ;
Snyder, Abraham Z. ;
Van Essen, David C. .
NEUROIMAGE, 2013, 80 :169-189
[3]   Probabilistic independent component analysis for functional magnetic resonance imaging [J].
Beckmann, CF ;
Smith, SA .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2004, 23 (02) :137-152
[4]   The Prediction of Brain Activity from Connectivity: Advances and Applications [J].
Bernstein-Eliav, Michal ;
Tavor, Ido .
NEUROSCIENTIST, 2024, 30 (03) :367-377
[5]   Generative Embedding for Model-Based Classification of fMRI Data [J].
Brodersen, Kay H. ;
Schofield, Thomas M. ;
Leff, Alexander P. ;
Ong, Cheng Soon ;
Lomakina, Ekaterina I. ;
Buhmann, Joachim M. ;
Stephan, Klaas E. .
PLOS COMPUTATIONAL BIOLOGY, 2011, 7 (06)
[6]  
Cardoso M. J., 2022, arXiv, DOI [DOI 10.1109/WACV51458.2022.00181, 10.1109/wacv51458.2022.00181]
[7]   The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites [J].
Casey, B. J. ;
Cannonier, Tariq ;
Conley, May I. ;
Cohen, Alexandra O. ;
Barch, Deanna M. ;
Heitzeg, Mary M. ;
Soules, Mary E. ;
Teslovich, Theresa ;
Dellarco, Danielle V. ;
Garavan, Hugh ;
Orr, Catherine A. ;
Wager, Tor D. ;
Banich, Marie T. ;
Speer, Nicole K. ;
Sutherland, Matthew T. ;
Riedel, Michael C. ;
Dick, Anthony S. ;
Bjork, James M. ;
Thomas, Kathleen M. ;
Chaarani, Bader ;
Mejia, Margie H. ;
Hagler, Donald J., Jr. ;
Cornejo, M. Daniela ;
Sicat, Chelsea S. ;
Harms, Michael P. ;
Dosenbach, Nico U. F. ;
Rosenberg, Monica ;
Earl, Eric ;
Bartsch, Hauke ;
Watts, Richard ;
Polimeni, Jonathan R. ;
Kuperman, Joshua M. ;
Fair, Damien A. ;
Dale, Anders M. .
DEVELOPMENTAL COGNITIVE NEUROSCIENCE, 2018, 32 :43-54
[8]   Baseline brain function in the preadolescents of the ABCD Study [J].
Chaarani, B. ;
Hahn, S. ;
Allgaier, N. ;
Adise, S. ;
Owens, M. M. ;
Juliano, A. C. ;
Yuan, D. K. ;
Loso, H. ;
Ivanciu, A. ;
Albaugh, M. D. ;
Dumas, J. ;
Mackey, S. ;
Laurent, J. ;
Ivanova, M. ;
Hagler, D. J. ;
Cornejo, M. D. ;
Hatton, S. ;
Agrawal, A. ;
Aguinaldo, L. ;
Ahonen, L. ;
Aklin, W. ;
Anokhin, A. P. ;
Arroyo, J. ;
Avenevoli, S. ;
Babcock, D. ;
Bagot, K. ;
Baker, F. C. ;
Banich, M. T. ;
Barch, D. M. ;
Bartsch, H. ;
Baskin-Sommers, A. ;
Bjork, J. M. ;
Blachman-Demner, D. ;
Bloch, M. ;
Bogdan, R. ;
Bookheimer, S. Y. ;
Breslin, F. ;
Brown, S. ;
Calabro, F. J. ;
Calhoun, V ;
Casey, B. J. ;
Chang, L. ;
Clark, D. B. ;
Cloak, C. ;
Constable, R. T. ;
Constable, K. ;
Corley, R. ;
Cottler, L. B. ;
Coxe, S. ;
Dagher, R. K. .
NATURE NEUROSCIENCE, 2021, 24 (08) :1176-1186
[9]   Regression-based machine-learning approaches to predict task activation using resting-state fMRI [J].
Cohen, Alexander D. ;
Chen, Ziyi ;
Jones, Oiwi Parker ;
Niu, Chen ;
Wang, Yang .
HUMAN BRAIN MAPPING, 2020, 41 (03) :815-826
[10]   Activity flow over resting-state networks shapes cognitive task activations [J].
Cole, Michael W. ;
Ito, Takuya ;
Bassett, Danielle S. ;
Schultz, Douglas H. .
NATURE NEUROSCIENCE, 2016, 19 (12) :1718-1726