Neural Architecture Performance Prediction Using Graph Neural Networks

被引:0
作者
Lukasik, Jovita [1 ]
Friede, David [1 ]
Stuckenschmidt, Heiner [1 ]
Keuper, Margret [1 ]
机构
[1] Univ Mannheim, Mannheim, Germany
来源
PATTERN RECOGNITION, DAGM GCPR 2020 | 2021年 / 12544卷
关键词
D O I
10.1007/978-3-030-71278-5_14
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In computer vision research, the process of automating architecture engineering, Neural Architecture Search (NAS), has gained substantial interest. Due to the high computational costs, most recent approaches to NAS as well as the few available benchmarks only provide limited search spaces. In this paper we propose a surrogate model for neural architecture performance prediction built upon Graph Neural Networks (GNN). We demonstrate the effectiveness of this surrogate model on neural architecture performance prediction for structurally unknown architectures (i.e. zero shot prediction) by evaluating the GNN on several experiments on the NAS-Bench-101 dataset.
引用
收藏
页码:188 / 201
页数:14
相关论文
共 41 条
[1]  
Baker B., 2018, 6 INT C LEARN REPR I, P1
[2]  
Bastings J, 2020, Arxiv, DOI arXiv:1704.04675
[3]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[4]   Geometric Deep Learning Going beyond Euclidean data [J].
Bronstein, Michael M. ;
Bruna, Joan ;
LeCun, Yann ;
Szlam, Arthur ;
Vandergheynst, Pierre .
IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) :18-42
[5]  
Bruna J, 2014, Arxiv, DOI arXiv:1312.6203
[6]   Random and Coherent Noise Suppression in DAS-VSP Data by Using a Supervised Deep Learning Method [J].
Dong, Xintong ;
Li, Yue ;
Zhong, Tie ;
Wu, Ning ;
Wang, Hongzhou .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[7]  
Elsken T, 2019, Arxiv, DOI arXiv:1808.05377
[8]  
Falkner S, 2018, PR MACH LEARN RES, V80
[9]  
Fey M, 2019, Arxiv, DOI [arXiv:1903.02428, DOI 10.48550/ARXIV.1903.02428, 10.48550/arXiv.1903.02428]
[10]  
Gilmer J, 2017, PR MACH LEARN RES, V70