Bulk and interface engineering of Prussian blue analogue cathodes for high-performance sodium-ion batteries

被引:0
作者
Zhou, Boao [1 ]
Gao, Yun [3 ]
Lin, Xihao [2 ,3 ]
Yang, Bin [2 ,3 ]
Kang, Ning [2 ,3 ]
Qiao, Yun [1 ]
Zhang, Hang [2 ,3 ]
Li, Li [1 ,3 ]
Chou, Shulei [2 ,3 ]
机构
[1] Shanghai Univ, Sch Environm & Chem Engn, Shanghai 20444, Peoples R China
[2] Wenzhou Univ, Inst Carbon Neutralizat Technol, Coll Chem & Mat Engn, Wenzhou 325035, Zhejiang, Peoples R China
[3] Wenzhou Univ Technol Innovat Inst Carbon Neutraliz, Wenzhou Key Lab Sodium Ion Batteries, Wenzhou 325035, Zhejiang, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
REDOX; HEXACYANOFERRATE; ELECTROLYTE; POTENTIALS; STORAGE; INTERCALATION; SUBSTITUTION; TRANSITION; STABILITY; WATER;
D O I
10.1039/d5sc02819a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Prussian blue analogues (PBAs) possess a unique three-dimensional crystal structure, which provides ample space for the movement of sodium ions (Na+), making them an ideal choice for cathode materials in sodium-ion batteries (SIBs). However, the bulk phase of PBAs typically contains some amount of crystal water and vacancies, which compromise the integrity of the lattice and impede the migration of Na+. Additionally, interface-related issues, such as side reactions and the dissolution of transition metal ions, severely limit the reversible capacity and cycle stability of PBA-based cathode materials. Therefore, addressing these challenges from the bulk and interface of PBAs is critical for the development of high-performance cathode materials for SIBs. This review aims to provide insights into potential strategies for overcoming these limitations and enhancing the electrochemical performance of PBAs. Firstly, the structure, morphology, and reaction mechanisms of PBAs are summarized systematically. The key challenges hindering the commercialization of PBAs are then categorized in this review. Several effective strategies for addressing these challenges are provided, including bulk phase engineering (thermal treatment, element doping, and etching), interface engineering (coating, ion exchange, and electrolyte additives), and the co-regulation of bulk and interface. Finally, the future commercialization prospects of PBAs are discussed, highlighting the necessary steps for transitioning from laboratory-scale research to industrial-scale production.
引用
收藏
页码:13594 / 13628
页数:35
相关论文
共 163 条
[1]   Hollow Functional Materials Derived from Metal-Organic Frameworks: Synthetic Strategies, Conversion Mechanisms, and Electrochemical Applications [J].
Cai, Ze-Xing ;
Wang, Zhong-Li ;
Kim, Jeonghun ;
Yamauchi, Yusuke .
ADVANCED MATERIALS, 2019, 31 (11)
[2]   Space-Confined Metal Ion Strategy for Carbon Materials Derived from Cobalt Benzimidazole Frameworks with High Desalination Performance in Simulated Seawater [J].
Cao, Shuai ;
Li, Yong ;
Tang, Yijian ;
Sun, Yangyang ;
Li, Wenting ;
Guo, Xiaotian ;
Yang, Feiyu ;
Zhang, Guangxun ;
Zhou, Huijie ;
Liu, Zheng ;
Li, Qing ;
Shakouri, Mohsen ;
Pang, Huan .
ADVANCED MATERIALS, 2023, 35 (23)
[3]   P2/O3 biphasic Fe/Mn-based layered oxide cathode with ultrahigh capacity and great cyclability for sodium ion batteries [J].
Chen, Cong ;
Huang, Weiyuan ;
Li, Yiwei ;
Zhang, Mingjian ;
Nie, Kaiqi ;
Wang, Jiaou ;
Zhao, Wenguang ;
Qi, Rui ;
Zuo, Changjian ;
Li, Zhibo ;
Yi, Haocong ;
Pan, Feng .
NANO ENERGY, 2021, 90
[4]   Control of Gradient Concentration Prussian White Cathodes for High-Performance Potassium-Ion Batteries [J].
Chen, Xuanjin ;
Hua, Chunxiu ;
Zhang, Kaicheng ;
Sun, Haohao ;
Hu, Shan ;
Jian, Zelang .
ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (40) :47125-47134
[5]   Synergistic Modification of Fe-Based Prussian Blue Cathode Material Based on Structural Regulation and Surface Engineering [J].
Chen, Zhao-Yao ;
Zhang, Lu-Lu ;
Fu, Xin-Yuan ;
Yan, Bo ;
Yang, Xue-Lin .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (38) :43308-43318
[6]   High-Performance Fe-Based Prussian Blue Cathode Material for Enhancing the Activity of Low-Spin Fe by Cu Doping [J].
Chen, Zhao-Yao ;
Fu, Xin-Yuan ;
Zhang, Lu-Lu ;
Yan, Bo ;
Yang, Xue-Lin .
ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (04) :5506-5513
[7]   Ion exchange to construct a high-performance core-shell MnFe-PB@CuFe-PB cathode material for sodium ion batteries [J].
Cheng, Hongyu ;
Liu, Yi-Nuo ;
Yu, Zhuo-Er ;
Song, Yingying ;
Qin, Yinping ;
Zhang, Maomao ;
Chen, Riming ;
Zhou, Jingjing ;
Liu, Yang ;
Guo, Bingkun .
JOURNAL OF MATERIALS CHEMISTRY C, 2023, 11 (29) :9787-9793
[8]   Anion-Cation Competition Chemistry for Comprehensive High-Performance Prussian Blue Analogs Cathodes [J].
Cui, Mangwei ;
Zhu, Yilong ;
Lei, Hao ;
Liu, Ao ;
Mo, Funian ;
Ouyang, Kefeng ;
Chen, Sheng ;
Lin, Xi ;
Chen, Zuhuang ;
Li, Kaikai ;
Jiao, Yan ;
Zhi, Chunyi ;
Huang, Yan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2024, 63 (23)
[9]   Using High-Entropy Configuration Strategy to Design Na-Ion Layered Oxide Cathodes with Superior Electrochemical Performance and Thermal Stability [J].
Ding, Feixiang ;
Zhao, Chenglong ;
Xiao, Dongdong ;
Rong, Xiaohui ;
Wang, Haibo ;
Li, Yuqi ;
Yang, Yang ;
Lu, Yaxiang ;
Hu, Yong-Sheng .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2022, 144 (18) :8286-8295
[10]   High-Entropy Prussian Blue Analogues Enable Lattice Respiration for Ultrastable Aqueous Aluminum-Ion Batteries [J].
Du, Kai ;
Liu, Yujie ;
Zhao, Yiqi ;
Li, Hui ;
Liu, Hexiong ;
Sun, Chunhao ;
Han, Mingshan ;
Ma, Tianyi ;
Hu, Yuxiang .
ADVANCED MATERIALS, 2024, 36 (30)