An end-user-oriented framework for the classification of multitemporal SAR images

被引:13
作者
Amitrano D. [1 ]
Di Martino G. [1 ]
Iodice A. [1 ]
Riccio D. [1 ]
Ruello G. [1 ]
机构
[1] Department of Electrical Engineering and Information Technology, University of Napoli Federico II, Naples
关键词
Radar imaging - Image classification;
D O I
10.1080/01431161.2015.1125550
中图分类号
学科分类号
摘要
In this article, we present an end-user-oriented framework for multitemporal synthetic aperture radar (SAR) data classification. It accepts as input the recently introduced Level-1α products, whose peculiarities are a high degree of interpretability and increased class separability with respect to single greyscale images. These properties make the Level-1α products very attractive in the application of simple supervised classification algorithms. Specifically, (1) the high degree of interpretability of the maps makes the training phase extremely simple; and (2) the good separation between classes gives excellent results using simple discrimination rules. The end product is a simple, fast, accurate, and repeatable framework. © 2015 Taylor & Francis.
引用
收藏
页码:248 / 261
页数:13
相关论文
共 16 条
[1]  
Amitrano D., Di Martino G., Iodice A., Riccio D., Ruello G., A New Framework for SAR Multitemporal Data RGB Representation: Rationale and Products, IEEE Transactions on Geoscience and Remote Sensing, 53, 1, pp. 117-133, (2015)
[2]  
Amitrano D., Di Martino G., Iodice A., Riccio D., Ruello G., Papa M.N., Ciervo F., Koussoube Y., Effectiveness of High-Resolution SAR for Water Resource Management in Low-Income Semi-Arid Countries, International Journal of Remote Sensing, 35, 1, pp. 70-88, (2014)
[3]  
Bruzzone L., Marconcini M., Wegmuller U., Wiesmann A., An Advanced System for the Automatic Classification of Multitemporal SAR Images, IEEE Transactions on Geoscience and Remote Sensing, 42, 6, pp. 1321-1334, (2004)
[4]  
Campbell J.B., Wynne R.H., Introduction to Remote Sensing, (2011)
[5]  
Camps-Valls G., Gomez-Chova L., Munoz-Mari J., Rojo-Alvarez J.L., Martinez-Ramon M., Kernel-Based Framework for Multitemporal and Multisource Remote Sensing Data Classification and Change Detection, IEEE Transactions on Geoscience and Remote Sensing, 46, 6, pp. 1822-1835, (2008)
[6]  
Davidson G., Ouchi K., Segmentation of SAR Images Using Multitemporal Information, IEE Proceedings Radar Sonar and Navigation, 150, 5, pp. 367-374, (2003)
[7]  
Engdahl M.E., Hyyppa J.M., Land-Cover Classification Using Multitemporal ERS-1/2 Insar Data, IEEE Transactions on Geoscience and Remote Sensing, 41, 7, pp. 1620-1628, (2003)
[8]  
Feranec J., Hazeu G., Christensen S., Jaffrain G., CORINE Land Cover Change Detection in Europe (Case Studies of the Netherlands and Slovakia), Land Use Policy, 24, 1, pp. 234-247, (2007)
[9]  
Fung A.K., Scattering from a Vegetation Layer, IEEE Transactions on Geoscience Electronics, 17, 1, pp. 1-6, (1979)
[10]  
Gaetano R., Amitrano D., Masi G., Poggi G., Verdoliva A., Ruello G., Scarpa G., Exploration of Multitemporal COSMO-SkyMed Data Via Tree-Structured MRF Segmentation, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 7, pp. 2763-2775, (2014)