Synthesize Then Compare: Detecting Failures and Anomalies for Semantic Segmentation

被引:79
作者
Xia, Yingda [1 ]
Zhang, Yi [1 ]
Liu, Fengze [1 ]
Shen, Wei [1 ]
Yuille, Alan L. [1 ]
机构
[1] Johns Hopkins Univ, Baltimore, MD 21218 USA
来源
COMPUTER VISION - ECCV 2020, PT I | 2020年 / 12346卷
关键词
Failure detection; Anomaly segmentation; Semantic segmentation;
D O I
10.1007/978-3-030-58452-8_9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The ability to detect failures and anomalies are fundamental requirements for building reliable systems for computer vision applications, especially safety-critical applications of semantic segmentation, such as autonomous driving and medical image analysis. In this paper, we systematically study failure and anomaly detection for semantic segmentation and propose a unified framework, consisting of two modules, to address these two related problems. The first module is an image synthesis module, which generates a synthesized image from a segmentation layout map, and the second is a comparison module, which computes the difference between the synthesized image and the input image. We validate our framework on three challenging datasets and improve the state-of-the-arts by large margins, i.e., 6% AUPR-Error on Cityscapes, 7% Pearson correlation on pancreatic tumor segmentation in MSD and 20% AUPR on StreetHazards anomaly segmentation.
引用
收藏
页码:145 / 161
页数:17
相关论文
共 49 条
[1]  
Amodei D, 2016, Arxiv, DOI [arXiv:1606.06565, DOI 10.48550/ARXIV.1606.06565]
[2]  
Baur C., 2018, MICCAI BRAINL WORKSH
[3]  
Bevandic P, 2018, Arxiv, DOI arXiv:1808.07703
[4]   Unsupervised performance evaluation of image segmentation [J].
Chabrier, Sebastien ;
Emile, Bruno ;
Rosenberger, Christophe ;
Laurent, Helene .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2006, 2006 (1)
[5]   Artificial intelligence, bias and clinical safety [J].
Challen, Robert ;
Denny, Joshua ;
Pitt, Martin ;
Gompels, Luke ;
Edwards, Tom ;
Tsaneva-Atanasova, Krasimira .
BMJ QUALITY & SAFETY, 2019, 28 (03) :231-237
[6]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[7]  
Corbière C, 2019, ADV NEUR IN, V32
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]  
DeVries T, 2018, Arxiv, DOI arXiv:1802.04865
[10]  
Gal Y, 2016, PR MACH LEARN RES, V48