Label-Free Machine Learning Prediction of Chemotherapy on Tumor Spheroids Using a Microfluidics Droplet Platform

被引:0
作者
Parent, Caroline [1 ]
Honari, Hasti [1 ]
Tocci, Tiziana [1 ]
Simon, Franck [1 ]
Zaidi, Sakina [2 ]
Jan, Audric [3 ]
Aubert, Vivian [1 ]
Delattre, Olivier [2 ]
Isambert, Herve [1 ]
Wilhelm, Claire [1 ]
Viovy, Jean-Louis [1 ]
机构
[1] PSL Res Univ, Inst Curie, CNRS, Lab Phys Cellules & Canc,UMR168, 26 Rue Ulm, F-75005 Paris, France
[2] PSL Res Univ, Inst Curie, Res Ctr, INSERM,Childrens Oncol Res Unit,U1330, 26 Rue Ulm, F-75005 Paris, France
[3] PSL Res Univ, Plateforme Technol Inst Pierre Gilles Gennes, CNRS, UAR3750, 6 Rue Jean Calvin, F-75005 Paris, France
来源
SMALL SCIENCE | 2025年
基金
欧洲研究理事会;
关键词
droplet microfluidics; drug testing; label-free; machine learning; tumor spheroids; PRECISION MEDICINE; DRUG; QUANTIFICATION; SENSITIVITY; CELLS;
D O I
10.1002/smsc.202500173
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
An integrated approach is proposed to rapidly evaluate the effects of anticancer treatments in 3D models, combining a droplet-based microfluidic platform for spheroid formation and single-spheroid chemotherapy application, label-free morphological analysis, and machine learning to assess treatment response. Morphological features of spheroids, such as size and color intensity, are extracted and selected using the multivariate information-based inductive causation algorithm, and used to train a neural network for spheroid classification into viability classes, derived from metabolic assays performed within the same platform as a benchmark. The model is tested on Ewing sarcoma cell lines and patient-derived xenograft (PDX) cells, demonstrating robust performance across datasets. It accurately predicts spheroid viability, used to generate dose-response curves and to determine half maximal inhibitory concentration (IC50) values comparable to traditional biochemical assays. Notably, a model trained on cell line spheroids successfully classifies PDX spheroids, highlighting its adaptability. Compared to convolutional neural network-based approaches, this method works with smaller training datasets and provides greater interpretability by identifying key morphological features. The droplet platform further reduces cell requirements, while single-spheroid confinement enhances classification quality. Overall, this label-free experimental and analytical platform is confirmed as a scalable, efficient, and dynamic tool for drug screening.
引用
收藏
页数:15
相关论文
共 77 条
[1]  
Abbaoui Wafae, 2024, Informatics in Medicine Unlocked, V46, DOI [10.1016/j.imu.2024.101475, 10.1016/j.imu.2024.101475]
[2]   Label-free visualization and quantification of the drug-type-dependent response of tumor spheroids by dynamic optical coherence tomography [J].
Abd El-Sadek, Ibrahim ;
Morishita, Rion ;
Mori, Tomoko ;
Makita, Shuichi ;
Mukherjee, Pradipta ;
Matsusaka, Satoshi ;
Yasuno, Yoshiaki .
SCIENTIFIC REPORTS, 2024, 14 (01)
[3]   Advantages and limitations of using cell viability assays for 3D bioprinted constructs [J].
Avnet, Sofia ;
Di Pompo, Gemma ;
Borciani, Giorgia ;
Fischetti, Tiziana ;
Graziani, Gabriela ;
Baldini, Nicola .
BIOMEDICAL MATERIALS, 2024, 19 (02)
[4]   Three-dimensional, label-free cell viability measurements in tissue engineering scaffolds using optical coherence tomography [J].
Babakhanova, Greta ;
Agrawal, Anant ;
Arora, Deepika ;
Horenberg, Allison ;
Budhathoki, Jagat B. ;
Dunkers, Joy P. ;
Chalfoun, Joe ;
Bajcsy, Peter ;
Simon, Carl G. .
JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2023, 111 (08) :1279-1291
[5]   Automated spheroid generation, drug application and efficacy screening using a deep learning classification: a feasibility study [J].
Benning, Leo ;
Peintner, Andreas ;
Finkenzeller, Guenter ;
Peintner, Lukas .
SCIENTIFIC REPORTS, 2020, 10 (01)
[6]   Integrated platform for culture, observation, and parallelized electroporation of spheroids [J].
Bregigeon, Pauline ;
Riviere, Charlotte ;
Franqueville, Laure ;
Vollaire, Christian ;
Marchalot, Julien ;
Frenea-Robin, Marie .
LAB ON A CHIP, 2022, 22 (13) :2489-2501
[7]   Droplet microfluidic technology for single-cell high-throughput screening [J].
Brouzes, Eric ;
Medkova, Martina ;
Savenelli, Neal ;
Marran, Dave ;
Twardowski, Mariusz ;
Hutchison, J. Brian ;
Rothberg, Jonathan M. ;
Link, Darren R. ;
Perrimon, Norbert ;
Samuels, Michael L. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2009, 106 (34) :14195-14200
[8]   Upregulation of the Mevalonate Pathway through EWSR1-FLI1/EGR2 Regulatory Axis Confers Ewing Cells Exquisite Sensitivity to Statins [J].
Buchou, Charlie ;
Laud-Duval, Karine ;
van der Ent, Wietske ;
Grossetete, Sandrine ;
Zaidi, Sakina ;
Gentric, Geraldine ;
Corbe, Maxime ;
Muller, Kevin ;
Del Nery, Elaine ;
Surdez, Didier ;
Delattre, Olivier .
CANCERS, 2022, 14 (09)
[9]   Recent Advances on Cell Culture Platforms for In Vitro Drug Screening and Cell Therapies: From Conventional to Microfluidic Strategies [J].
Cardoso, Beatriz D. ;
Castanheira, Elisabete M. S. ;
Lanceros-Mendez, Senentxu ;
Cardoso, Vanessa F. .
ADVANCED HEALTHCARE MATERIALS, 2023, 12 (18)
[10]   Tribulations and future opportunities for artificial intelligence in precision medicine [J].
Carini, Claudio ;
Seyhan, Attila A. .
JOURNAL OF TRANSLATIONAL MEDICINE, 2024, 22 (01)