Recurrent Neural Network Analysis of Optometry Data

被引:0
作者
Sharma, Avinash [1 ]
Barua, Tarkeshwar [2 ]
Saxena, Rini [1 ]
Goswami, Manish [3 ]
Goyel, Parul [4 ]
机构
[1] Chandigarh Grp Coll, Dept Comp Sci & Engn, Chandigarh Engn, Jhanjeri 140307, India
[2] Roorkeee Inst Technol, Dept Comp Sci & Engn, Roorkee, Uttar Pradesh, India
[3] Chandigarh Grp Coll, Chandigarh Pharm Coll, Jhanjeri 140307, India
[4] Maharishi Markandeshwar, Comp Sci & Engn MM Engn Coll, Ambala 1307, Haryana, India
来源
2024 INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND EMERGING COMMUNICATION TECHNOLOGIES, ICEC | 2024年
关键词
Optometry; Optometry systems; Eye-tracking Data; Gaze Patterns; Time-series Data; Data Analysis; Predictive Analytics; Hyperparameter Tuning; Ophthalmology;
D O I
10.1109/ICEC59683.2024.10837415
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This survey explores the potential of recurrent neural networks (RNNs) for analyse eye-trailling data, generally data obtained from Optometry systems. RNNs stand out at distinguishing patterns in consecutive data, making them appropriate for tasks like foretell future gaze, distinguishing areas of interest, and detecting anomalousness in gaze patterns. The abstract synopsis the process of probing Optometry data using RNNs. It highlights data pre-processing steps like cleaning, formatting, and normalization. The assortment of an LSTM network edifice and hyperparameter tuning for optimal execution are discussed. breeding and evaluation operation are explained[12], including using separate breeding, validation, and testing sets. Finally, the abstract mentions potential computer applications of the analysis, including human-computer interaction(HCI) (HCI) optimization and individual behavior understanding.
引用
收藏
页码:811 / 816
页数:6
相关论文
共 18 条
[1]  
Bace M., 2018, Diva portal
[2]  
Barua T., 2021 IEEE INT C TECH, P1
[3]  
Dankan Gowda V., 2024, 2024 International Conference on Automation and Computation (AUTOCOM), P142, DOI 10.1109/AUTOCOM60220.2024.10486101
[4]  
Hochreiter S, 1997, NEURAL COMPUT, V9, P1735, DOI [10.1162/neco.1997.9.8.1735, 10.1162/neco.1997.9.1.1, 10.1007/978-3-642-24797-2]
[5]  
Luo Y., 2017, International Journal of Human-Computer Studies, V107, P1
[6]  
Mardan N., Pattern Recognition, V47, P1034
[7]  
Neelakantan U., 2021, Psychol. Educ, V58, P5614
[8]   Deep learning in neural networks: An overview [J].
Schmidhuber, Juergen .
NEURAL NETWORKS, 2015, 61 :85-117
[9]  
Sharma Avinash, 2023, Mobile Radio Communications and 5G Networks: Proceedings of Third MRCN 2022. Lecture Notes in Networks and Systems (588), P637, DOI 10.1007/978-981-19-7982-8_53
[10]  
Sharma Avinash, 2022, 2022 7th International Conference on Communication and Electronics Systems (ICCES), P1258, DOI 10.1109/ICCES54183.2022.9835882