MONOTONICITY RESULTS OF SOLUTIONS FOR SYSTEM INVOLVING THE FRACTIONAL p-LAPLACIAN

被引:0
作者
Feng, Tingting [1 ]
Cai, Miaomiao [2 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Peoples R China
[2] Zhengzhou Univ Aeronaut, Sch Math, Zhengzhou 450046, Peoples R China
来源
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S | 2025年
关键词
Sliding methods; narrow region principle; fractional p-Laplacian operator; monotonicity; MOVING PLANES; SYMMETRY; EQUATION;
D O I
10.3934/dcdss.2025110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the monotonicity of solutions to the fractional p-Laplacian system given by (-triangle)(p1)(s1) u(x) = f (u(x), v(x)), x is an element of ohm, (-triangle)(p2)(s2 ) v(x) = g(u(x), v(x)), x is an element of ohm, where 0 < s(1), s(2) < 1, 2 <= p(1), p(2) < infinity, and n > 2. The domain ohm subset of R-n is either a bounded domain that is convex in xn-direction, an unbounded domain, or the whole space. The operator (-triangle)(p)(s) denotes the fractional p-Laplacian (with s = s(1), s(2) and p = p(1), p(2)), and f,g is an element of C-1(R-2). Under suitable conditions on the functions f and g, we employ the sliding method to demonstrate that any solution (u, v) of the system is strictly increasing in ohm with respect to x(n). The proof involves the idea of singular integral estimation along a sequence of approximate maximum points, which was originally introduced by Wu and Chen [22].
引用
收藏
页数:23
相关论文
共 25 条
[1]   A nonlocal anisotropic model for phase transitions - Part I: The Optimal Profile Problem [J].
Alberti, G ;
Bellettini, G .
MATHEMATISCHE ANNALEN, 1998, 310 (03) :527-560
[2]  
Andreu-Vaillo F., 2010, Nonlocal Diffusion Problems
[3]  
Baudoin F, 2024, Arxiv, DOI arXiv:2403.18984
[4]  
BERESTYCKI H, 1990, ANAL CETERA, P115, DOI DOI 10.1016/B978-0-12-574249-8.50011-0
[5]  
Berestycki H., 1988, J Geom Phys, V5, P237, DOI [10.1016/0393-0440(88)90006-X, DOI 10.1016/0393-0440(88)90006-X]
[6]  
BERESTYCKI H., 1991, BOL SOC BRAS MAT, V22, P1, DOI [DOI 10.1007/BF01244896, 10.1007/BF01244896]
[7]   STUDY OF FRACTIONAL SEMIPOSITONE PROBLEMS ON RN [J].
Biswas, Nirjan .
OPUSCULA MATHEMATICA, 2024, 44 (04) :445-470
[8]   Non-local gradient dependent operators [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
ADVANCES IN MATHEMATICS, 2012, 230 (4-6) :1859-1894
[9]   Nonlocal Tug-of-War and the Infinity Fractional Laplacian [J].
Bjorland, C. ;
Caffarelli, L. ;
Figalli, A. .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2012, 65 (03) :337-380
[10]   HEAT KERNEL ESTIMATES FOR THE FRACTIONAL LAPLACIAN WITH DIRICHLET CONDITIONS [J].
Bogdan, Krzysztof ;
Grzywny, Tomasz ;
Ryznar, Michal .
ANNALS OF PROBABILITY, 2010, 38 (05) :1901-1923