Baseline predictors for 28-day COVID-19 severity and mortality among hospitalized patients: results from the IMPACC study

被引:0
作者
Hou, Jintong [1 ]
Haslund-Gourley, Benjamin [1 ]
Diray-Arce, Joann [2 ]
Hoch, Annmarie [2 ]
Rouphael, Nadine [3 ]
Becker, Patrice M. [4 ]
Augustine, Alison D. [4 ]
Ozonoff, Al [2 ]
Guan, Leying [5 ,6 ]
Kleinstein, Steven H. [5 ,6 ]
Peters, Bjoern [7 ]
Reed, Elaine [8 ]
Altman, Matt [9 ]
Langelier, Charles R. [10 ]
Maecker, Holden [11 ]
Kim, Seunghee [12 ]
Montgomery, Ruth R. [5 ,6 ]
Krammer, Florian [11 ]
Wilson, Michael [10 ]
Eckalbar, Walter [10 ]
Bosinger, Steven E. [3 ]
Levy, Ofer [13 ]
Steen, Hanno [13 ]
Rosen, Lindsey B. [4 ]
Baden, Lindsey R. [14 ]
Melamed, Esther [15 ]
Ehrlich, Lauren I. R. [15 ]
McComsey, Grace A. [17 ]
Sekaly, Rafick P. [16 ,17 ]
Schaenman, Joanna [8 ]
Shaw, Albert C. [5 ,6 ]
Hafler, David A. [5 ,6 ]
Corry, David B. [18 ,19 ]
Kheradmand, Farrah [18 ,19 ]
Atkinson, Mark A. [20 ]
Brakenridge, Scott C. [20 ]
Higuita, Nelson I. Agudelo [21 ]
Metcalf, Jordan P. [21 ]
Hough, Catherine L. [22 ]
Messer, William B. [22 ]
Pulendran, Bali [11 ]
Nadeau, Kari C. [11 ]
Davis, Mark M. [11 ]
Sesma, Ana Fernandez [12 ]
Simon, Viviana [12 ]
Kraft, Monica [23 ]
Bime, Chris [22 ]
Calfee, Carolyn S. [10 ]
Erle, David J. [10 ]
Robinson, Lucy F. [1 ]
机构
[1] Drexel Univ, Dept Microbiol & Immunol, Dept Med, Dept Epidemiol & Biostat, Philadelphia, PA 19104 USA
[2] Boston Childrens Hosp, Clin & Data Coordinating Ctr CDCC, Precis Vaccines Program, Boston, MA USA
[3] Emory Sch Med, Atlanta, GA USA
[4] NIAID, NIH, Bethesda, MD USA
[5] Yale Sch Publ Hlth, New Haven, CT USA
[6] Yale Sch Med, New Haven, CT USA
[7] La Jolla Inst Immunol, La Jolla, CA USA
[8] Univ Calif Los Angeles, David Geffen Sch Med, Los Angeles, CA USA
[9] Univ Washington, Benaroya Res Inst, Dept Med, Seattle, WA USA
[10] Univ Calif San Francisco, Sch Med, San Francisco, CA USA
[11] Stanford Univ, Sch Med, Palo Alto, CA USA
[12] Icahn Sch Med Mt Sinai, New York, NY USA
[13] Harvard Med Sch, Boston Childrens Hosp, Precis Vaccines Program, Boston, MA USA
[14] Harvard Med Sch, Brigham & Womens Hosp, Boston, MA USA
[15] Univ Texas Austin, Dept Neurol, Dept Mol Biosci, Austin, TX USA
[16] Case Western Reserve Univ, Cleveland, OH USA
[17] Univ Hosp Cleveland, Cleveland, OH USA
[18] Baylor Coll Med, Houston, TX USA
[19] Ctr Translat Res Inflammatory Dis, Houston, TX USA
[20] Univ Florida, Dept Pathol Immunol & Lab Med, Dept Surg, Gainesville, FL USA
[21] Oklahoma Univ, Hlth Sci Ctr, Oklahoma City, OK USA
[22] Oregon Hlth & Sci Univ, Dept Med, Portland, OR USA
[23] Univ Arizona, Dept Med, Tucson, AZ USA
基金
美国国家卫生研究院; 美国国家科学基金会;
关键词
COVID-19; severity; mortality; machine learning; SpO(2)/FiO(2); TNFRSF11B; ribitol; FGF23;
D O I
10.3389/fmed.2025.1604388
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Introduction: The coronavirus disease 2019 (COVID-19) pandemic threatened public health and placed a significant burden on medical resources. The Immunophenotyping Assessment in a COVID-19 Cohort (IMPACC) study collected clinical, demographic, blood cytometry, serum receptor-binding domain (RBD) antibody titers, metabolomics, targeted proteomics, nasal metagenomics, Olink, nasal viral load, autoantibody, SARS-CoV-2 antibody titers, and nasal and peripheral blood mononuclear cell (PBMC) transcriptomics data from patients hospitalized with COVID-19. The aim of this study is to select baseline biomarkers and build predictive models for 28-day in-hospital COVID-19 severity and mortality with most predictive variables while prioritizing routinely collected variables. Methods: We analyzed 1102 hospitalized COVID-19 participants. We used the lasso and forward selection to select top predictors for severity and mortality, and built predictive models based on balanced training data. We then validated the models on testing data. Results: Severity was best predicted by the baseline SpO(2)/FiO(2) ratio obtained from COVID-19 patients (test AUC: 0.874). Adding patient age, BMI, FGF23, IL-6, and LTA to the disease severity prediction model improves the test AUC by an additional 3%. The clinical mortality prediction model using SpO(2)/FiO(2) ratio, age, and BMI resulted in a test AUC of 0.83. Adding laboratory results such as TNFRSF11B and plasma ribitol count increased the prediction model by 3.5%. The severity and mortality prediction models developed outperform the Sequential Organ Failure Assessment (SOFA) score among inpatients and perform similarly to the SOFA score among ICU patients. Conclusion: This study identifies clinical data and laboratory biomarkers of COVID-19 severity and mortality using machine learning models. The study identifies SpO(2)/FiO(2) ratio to be the most important predictor for both severity and mortality. Several biomarkers were identified to modestly improve the predictions. The results also provide a baseline of SARS-CoV-2 infection during the early stages of the coronavirus emergence and can serve as a baseline for future studies that inform how the genetic evolution of the coronavirus affects the host response to new variants.
引用
收藏
页数:14
相关论文
共 43 条
[1]   PREDICTIVE VALUE OF SPECIFIC CYTOKINES FOR LETHAL COVID-19 OUTCOME [J].
Arsentieva, N. A. ;
Liubimova, N. E. ;
Batsunov, O. K. ;
Korobova, Z. R. ;
Kuznetsova, R. N. ;
Rubinstein, A. A. ;
Stanevich, O., V ;
Lebedeva, A. A. ;
Vorobyov, E. A. ;
Vorobyova, S. V. ;
Kulikov, A. N. ;
Gavrilova, E. G. ;
Pevtcov, D. E. ;
Polushin, Yu S. ;
Shlyk, I., V ;
Totolian, A. A. .
INFEKTSIYA I IMMUNITET, 2022, 12 (05) :859-868
[2]   Prognostic models in COVID-19 infection that predict severity: a systematic review [J].
Buttia, Chepkoech ;
Llanaj, Erand ;
Raeisi-Dehkordi, Hamidreza ;
Kastrati, Lum ;
Amiri, Mojgan ;
Mecani, Renald ;
Taneri, Petek Eylul ;
Ochoa, Sergio Alejandro Gomez ;
Raguindin, Peter Francis ;
Wehrli, Faina ;
Khatami, Farnaz ;
Espinola, Octavio Pano ;
Rojas, Lyda Z. ;
de Mortanges, Aurelie Pahud ;
Macharia-Nimietz, Eric Francis ;
Alijla, Fadi ;
Minder, Beatrice ;
Leichtle, Alexander B. ;
Luethi, Nora ;
Ehrhard, Simone ;
Que, Yok-Ai ;
Fernandes, Laurenz Kopp ;
Hautz, Wolf ;
Muka, Taulant .
EUROPEAN JOURNAL OF EPIDEMIOLOGY, 2023, 38 (04) :355-372
[3]   Interleukin-6 in Covid-19: A systematic review andmeta-analysis [J].
Coomes, Eric A. ;
Haghbayan, Hourmazd .
REVIEWS IN MEDICAL VIROLOGY, 2020, 30 (06) :1-9
[4]   Metabolomic analyses of COVID-19 patients unravel stage-dependent and prognostic biomarkers [J].
Danlos, Francois-Xavier ;
Grajeda-Iglesias, Claudia ;
Durand, Sylvere ;
Sauvat, Allan ;
Roumier, Mathilde ;
Cantin, Delphine ;
Colomba, Emeline ;
Rohmer, Julien ;
Pommeret, Fanny ;
Baciarello, Giulia ;
Willekens, Christophe ;
Vasse, Marc ;
Griscelli, Frank ;
Fahrner, Jean-Eudes ;
Goubet, Anne-Gaelle ;
Dubuisson, Agathe ;
Derosa, Lisa ;
Nirmalathasan, Nitharsshini ;
Bredel, Delphine ;
Mouraud, Severine ;
Pradon, Caroline ;
Stoclin, Annabelle ;
Rozenberg, Flore ;
Duchemin, Jerome ;
Jourdi, Georges ;
Ellouze, Syrine ;
Levavasseur, Francoise ;
Albiges, Laurence ;
Soria, Jean-Charles ;
Barlesi, Fabrice ;
Solary, Eric ;
Andre, Fabrice ;
Pene, Frederic ;
Ackerman, Felix ;
Mouthon, Luc ;
Zitvogel, Laurence ;
Marabelle, Aurelien ;
Michot, Jean-Marie ;
Fontenay, Michaela ;
Kroemer, Guido .
CELL DEATH & DISEASE, 2021, 12 (03)
[5]   SOFA and mortality endpoints in randomized controlled trials: a systematic review and meta-regression analysis [J].
de Grooth, Harm-Jan ;
Geenen, Irma L. ;
Girbes, Armand R. ;
Vincent, Jean-Louis ;
Parienti, Jean-Jacques ;
Straaten, Heleen M. Oudemans-van .
CRITICAL CARE, 2017, 21
[6]   COMPARING THE AREAS UNDER 2 OR MORE CORRELATED RECEIVER OPERATING CHARACTERISTIC CURVES - A NONPARAMETRIC APPROACH [J].
DELONG, ER ;
DELONG, DM ;
CLARKEPEARSON, DI .
BIOMETRICS, 1988, 44 (03) :837-845
[7]   Multi-omic longitudinal study reveals immune correlates of clinical course among hospitalized COVID-19 patients [J].
Diray-Arce, Joann ;
Fourati, Slim ;
Jayavelu, Naresh Doni ;
Patel, Ravi ;
Maguire, Cole ;
Chang, Ana C. ;
Dandekar, Ravi ;
Qi, Jingjing ;
Lee, Brian H. ;
van Zalm, Patrick ;
Schroeder, Andrew ;
Chen, Ernie ;
Konstorum, Anna ;
Brito, Anderson ;
Gygi, Jeremy P. ;
Kho, Alvin ;
Chen, Jing ;
Pawar, Shrikant ;
Gonzalez-Reiche, Ana Silvia ;
Hoch, Annmarie ;
Milliren, Carly E. ;
Overton, James A. ;
Westendorf, Kerstin ;
Cairns, Charles B. ;
Rouphael, Nadine ;
Bosinger, Steven E. ;
Kim-Schulze, Seunghee ;
Krammer, Florian ;
Rosen, Lindsey ;
Grubaugh, Nathan D. ;
van Bakel, Harm ;
Wilson, Michael ;
Rajan, Jayant ;
Steen, Hanno ;
Eckalbar, Walter ;
Cotsapas, Chris ;
Langelier, Charles R. ;
Levy, Ofer ;
Altman, Matthew C. ;
Maecker, Holden ;
Montgomery, Ruth R. ;
Haddad, Elias K. ;
Sekaly, Rafick P. ;
Esserman, Denise ;
Ozonoff, Al ;
Becker, Patrice M. ;
Augustine, Alison D. ;
Guan, Leying ;
Peters, Bjoern ;
Kleinstein, Steven H. .
CELL REPORTS MEDICINE, 2023, 4 (06)
[8]   Interleukin-6 contributes to the increase in fibroblast growth factor 23 expression in acute and chronic kidney disease [J].
Durlacher-Betzer, Karina ;
Hassan, Alia ;
Levi, Ronen ;
Axelrod, Jonathan ;
Silver, Justin ;
Naveh-Many, Tally .
KIDNEY INTERNATIONAL, 2018, 94 (02) :315-325
[9]   Sex differences in global metabolomic profiles of COVID-19 patients [J].
Escarcega, Rocio Diaz ;
Honarpisheh, Pedram ;
Colpo, Gabriela Delevati ;
Ahnstedt, Hilda W. ;
Couture, Lucy ;
Juneja, Shivanki ;
Torres, Glenda ;
Ortiz, Guadalupe J. ;
Sollome, James ;
Tabor, Natalie ;
Ganesh, Bhanu P. ;
Choi, H. Alex ;
Liu, Fudong ;
McCullough, Louise D. ;
Tsvetkov, Andrey S. .
CELL DEATH & DISEASE, 2022, 13 (05)
[10]   Neurologic Syndromes Predict Higher In-Hospital Mortality in COVID-19 [J].
Eskandar, Emad Nader ;
Altschul, David J. ;
Ramos, Rafael de la Garza ;
Cezayirli, Phillip ;
Unda, Santiago R. ;
Benton, Joshua ;
Dardick, Joseph ;
Toma, Aureliana ;
Patel, Nikunj ;
Malaviya, Avinash ;
Flomenbaum, David ;
Fernandez-Torres, Jenelys ;
Lu, Jenny ;
Holland, Ryan ;
Burchi, Elisabetta ;
Zampolin, Richard ;
Hsu, Kevin ;
McClelland, Andrew ;
Burns, Judah ;
Erdfarb, Amichai ;
Malhotra, Rishi ;
Gong, Michelle ;
Semczuk, Peter ;
Gursky, Jonathan ;
Ferastraoaru, Victor ;
Rosengard, Jillian ;
Antoniello, Daniel ;
Labovitz, Daniel ;
Esenwa, Charles ;
Milstein, Mark ;
Boro, Alexis ;
Mehler, Mark F. .
NEUROLOGY, 2021, 96 (11) :E1527-E1538