Harmonizing Transferability and Discriminability for Adapting Object Detectors

被引:258
作者
Chen, Chaoqi [1 ]
Zheng, Zebiao [1 ]
Ding, Xinghao [1 ]
Huang, Yue [1 ]
Dou, Qi [2 ]
机构
[1] Xiamen Univ, Sch Informat, Fujian Key Lab Sensing & Comp Smart City, Xiamen, Peoples R China
[2] Chinese Univ Hong Kong, Dept Comp Sci & Engn, Hong Kong, Peoples R China
来源
2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2020) | 2020年
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR42600.2020.00889
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent advances in adaptive object detection have achieved compelling results in virtue of adversarial feature adaptation to mitigate the distributional shifts along the detection pipeline. Whilst adversarial adaptation significantly enhances the transferability of feature representations, the feature discriminability of object detectors remains less investigated. Moreover, transferability and discriminability may come at a contradiction in adversarial adaptation given the complex combinations of objects and the differentiated scene layouts between domains. In this paper, we propose a Hierarchical Transferability Calibration Network (HTCN) that hierarchically (local-region/image/instance) calibrates the transferability of feature representations for harmonizing transferability and discriminability. The proposed model consists of three components: (1) Importance Weighted Adversarial Training with input Interpolation (IWAT-I), which strengthens the global discriminability by re-weighting the interpolated image-level features; (2) Context-aware Instance-Level Alignment (CILA) module, which enhances the local discriminability by capturing the underlying complementary effect between the instance-level feature and the global context information for the instance-level feature alignment; (3) local feature masks that calibrate the local transferability to provide semantic guidance for the following discriminative pattern alignment. Experimental results show that HTCN significantly outperforms the state-of-the-art methods on benchmark datasets.
引用
收藏
页码:8866 / 8875
页数:10
相关论文
共 64 条
[1]  
BEN-DAVID S., 2010, JMLR Workshop and Conference Proceedings, P129
[2]   A theory of learning from different domains [J].
Ben-David, Shai ;
Blitzer, John ;
Crammer, Koby ;
Kulesza, Alex ;
Pereira, Fernando ;
Vaughan, Jennifer Wortman .
MACHINE LEARNING, 2010, 79 (1-2) :151-175
[3]   Unsupervised Pixel-Level Domain Adaptation with Generative Adversarial Networks [J].
Bousmalis, Konstantinos ;
Silberman, Nathan ;
Dohan, David ;
Erhan, Dumitru ;
Krishnan, Dilip .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :95-104
[4]   Exploring Object Relation in Mean Teacher for Cross-Domain Detection [J].
Cai, Qi ;
Pan, Yingwei ;
Ngo, Chong-Wah ;
Tian, Xinmei ;
Duan, Lingyu ;
Yao, Ting .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :11449-11458
[5]   MegDet: A Large Mini-Batch Object Detector [J].
Peng, Chao ;
Xiao, Tete ;
Li, Zeming ;
Jiang, Yuning ;
Zhang, Xiangyu ;
Jia, Kai ;
Yu, Gang ;
Sun, Jian .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :6181-6189
[6]   Progressive Feature Alignment for Unsupervised Domain Adaptation [J].
Chen, Chaoqi ;
Xie, Weiping ;
Huang, Wenbing ;
Rong, Yu ;
Ding, Xinghao ;
Huang, Yue ;
Xu, Tingyang ;
Huang, Junzhou .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :627-636
[7]  
Chen Xinyang, 2019, P MACHINE LEARNING R, V97
[8]   Domain Adaptive Faster R-CNN for Object Detection in the Wild [J].
Chen, Yuhua ;
Li, Wen ;
Sakaridis, Christos ;
Dai, Dengxin ;
Van Gool, Luc .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :3339-3348
[9]   Unsupervised Domain Adaptation via Regularized Conditional Alignment [J].
Cicek, Safa ;
Soatto, Stefano .
2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, :1416-1425
[10]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223