Adaptive Parameter Tuning of Evolutionary Computation Algorithms

被引:0
作者
Choi, Kwok Pui [1 ]
Lai, Tze Leung [2 ]
Tong, Xin T. [3 ]
Tsang, Ka Wai [4 ]
Wong, Weng Kee [5 ]
Zhang, Hongbao [4 ]
机构
[1] Natl Univ Singapore, Dept Stat & Data Sci, 6 Sci Dr 2, Singapore 117546, Singapore
[2] Stanford Univ, Dept Stat, 390 Jane Stanford Way, Stanford, CA 94305 USA
[3] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore 119076, Singapore
[4] Chinese Univ Hong Kong, Sch Data Sci, 2001 Longxiang Blvd, Shenzhen 518172, Longgang, Peoples R China
[5] Univ Calif Los Angeles, Dept Biostat, 650 Charles Young Dr, Los Angeles, CA 90095 USA
关键词
& varepsilon; -Greedy randomization; Adaptive arm elimination; Contextual multi-armed bandits; Decoupling inequalities; Hybrid resampling; NATURE-INSPIRED OPTIMIZATION; PARTICLE SWARM OPTIMIZATION; OPTIMAL DESIGNS; ALLOCATION; BANDITS;
D O I
10.1007/s12561-025-09500-w
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Herein, we consider the long-standing problem of adaptive parameter tuning and propose a novel approach, with optimal properties that achieve oracle bounds, to meet the challenges in new important applications in the big-data multi-cloud era.
引用
收藏
页数:31
相关论文
共 51 条
[1]  
Almetwally EM., 2021, Math Sci Lett, V10, P1
[2]  
[Anonymous], 1974, P PROG STAT EUR M ST
[3]   Finite-time analysis of the multiarmed bandit problem [J].
Auer, P ;
Cesa-Bianchi, N ;
Fischer, P .
MACHINE LEARNING, 2002, 47 (2-3) :235-256
[4]  
Bartroff J, 2013, SPRINGER SER STAT, P1, DOI 10.1007/978-1-4614-6114-2
[5]  
BELLMAN RE, 1957, DYNAMIC PROGRAMMING
[6]  
Blum C, 2016, ART INTEL, P1, DOI 10.1007/978-3-319-30883-8
[7]   Particle swarm optimization for searching efficient experimental designs: A review [J].
Chen, Pin-Yang ;
Chen, Ray-Bing ;
Wong, Weng Kee .
WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2022, 14 (05)
[8]   Hybrid algorithms for generating optimal designs for discriminating multiple nonlinear models under various error distributional assumptions [J].
Chen, Ray-Bing ;
Chen, Ping-Yang ;
Hsu, Cheng-Lin ;
Wong, Weng Kee .
PLOS ONE, 2020, 15 (10)
[9]   Minimax optimal designs via particle swarm optimization methods [J].
Chen, Ray-Bing ;
Chang, Shin-Perng ;
Wang, Weichung ;
Tung, Heng-Chih ;
Wong, Weng Kee .
STATISTICS AND COMPUTING, 2015, 25 (05) :975-988
[10]   A STATISTICAL APPROACH TO ADAPTIVE PARAMETER TUNING IN NATURE-INSPIRED OPTIMIZATION AND OPTIMAL SEQUENTIAL DESIGN OF DOSE-FINDING TRIALS [J].
Choi, Kwok Pui ;
Lai, Tze Leung ;
Tong, Xin T. ;
Wong, Weng Kee .
STATISTICA SINICA, 2021, 31 :2381-2401