Improving Cold-Start Recommendation via Multi-prior Meta-learning

被引:11
作者
Chen, Zhengyu [1 ,2 ]
Wang, Donglin [2 ]
Yin, Shiqian [3 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Westlake Univ, Sch Engn, Hangzhou, Peoples R China
[3] Cornell Univ, Ithaca, NY USA
来源
ADVANCES IN INFORMATION RETRIEVAL, ECIR 2021, PT II | 2021年 / 12657卷
关键词
D O I
10.1007/978-3-030-72240-1_22
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Optimization-based meta-learning has been applied in cold-start recommendations, where a good initialization of meta learner is obtained from past experiences and then reused for fast adaptation to new tasks. However, when dealing with various users with diverse preferences, meta-learning with a single prior might fail in cold-start recommendations due to its insufficient capability for adaptation. To address this problem, a multi-prior meta-learning (MPML) approach is proposed in this paper and applied in cold-start recommendations. More concretely, we integrate a novel accuracy-based task clustering scheme with double gradient to learn multiple priors. Experiments demonstrate the effectiveness of MPML.
引用
收藏
页码:249 / 256
页数:8
相关论文
共 19 条
[1]  
Chen ZY, 2021, AAAI CONF ARTIF INTE, V35, P4010
[2]  
Chen ZY, 2019, IEEE INT CONF BIG DA, P1046, DOI 10.1109/BigData47090.2019.9005677
[3]  
Cheng H.-T., 2016, P 1 WORKSH DEEP LEAR, P7
[4]   Local Latent Space Models for Top-N Recommendation [J].
Christakopoulou, Evangelia ;
Karypis, George .
KDD'18: PROCEEDINGS OF THE 24TH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY & DATA MINING, 2018, :1235-1243
[5]   Sequential Scenario-Specific Meta Learner for Online Recommendation [J].
Du, Zhengxiao ;
Wang, Xiaowei ;
Yang, Hongxia ;
Zhou, Jingren ;
Tang, Jie .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2895-2904
[6]  
Fallah A, 2020, Arxiv, DOI arXiv:1908.10400
[7]  
Finn C, 2017, PR MACH LEARN RES, V70
[8]  
Guo HF, 2017, PROCEEDINGS OF THE TWENTY-SIXTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, P1725
[9]   The MovieLens Datasets: History and Context [J].
Harper, F. Maxwell ;
Konstan, Joseph A. .
ACM TRANSACTIONS ON INTERACTIVE INTELLIGENT SYSTEMS, 2016, 5 (04)
[10]  
Hu L, 2019, AAAI CONF ARTIF INTE, P3830