Finite dimensionality of Besov spaces and potential-theoretic decomposition of metric spaces

被引:1
作者
Kumagai, Takashi [1 ]
Shanmugalingam, Nageswari [2 ]
Shimizu, Ryosuke [3 ,4 ]
机构
[1] Waseda Univ, Dept Math, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[2] Univ Cincinnati, Dept Math Sci, POB 210025, Cincinnati, SA 45221, Australia
[3] Waseda Univ, Waseda Res Inst Sci & Engn, 3-4-1 Okubo,Shinjuku Ku, Tokyo 1698555, Japan
[4] Kyoto Univ, Grad Sch Informat, Yoshida Honmachi,Sakyo Ku, Kyoto 6068501, Japan
来源
ANNALES FENNICI MATHEMATICI | 2025年 / 50卷 / 01期
关键词
Besov spaces; Korevaar-Schoen spaces; fractal; irreducible p-energy form; Newton-Sobolev spaces; p-Poincar & eacute; inequality; Sierpinski fractals; decomposition;
D O I
10.54330/afm.163110
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the context of a metric measure space (X, d, mu), we explore the potential-theoretic implications of having a finite-dimensional Besov space. We prove that if the dimension of the Besov space B-p,p(theta)(X) is k> 1, then X can be decomposed into k number of irreducible components (Theorem 1.1). Note that 9 may be bigger than 1, as our framework includes fractals. We also provide sufficient conditions under which the dimension of the Besov space is 1. We introduce critical exponents theta(p)(X) and theta(& lowast;)(p)(X) for the Besov spaces. As examples illustrating Theorem 1.1, we compute these critical exponents for spaces X formed by glueing copies of n-dimensional cubes, the Sierpi & nacute;ski gaskets, and of the Sierpi & nacute;ski carpet.
引用
收藏
页码:347 / 369
页数:23
相关论文
共 24 条
[1]   Korevaar-Schoen-Sobolev spaces and critical exponents in metric measure spaces [J].
Baudoin, Fabrice .
ANNALES FENNICI MATHEMATICI, 2024, 49 (02) :487-527
[2]  
Bishop CJ, 2001, ANN ACAD SCI FENN-M, V26, P361
[3]   Poincare inequalities and Ap weights on bow-ties [J].
Bjorn, Anders ;
Bjorn, Jana ;
Christensen, Andreas .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 539 (01)
[4]   Extension and trace results for doubling metric measure spaces and their hyperbolic fillings [J].
Bjorn, Anders ;
Bjorn, Jana ;
Shanmugalingam, Nageswari .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 159 :196-249
[5]   Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups [J].
Bourdon, Marc ;
Kleiner, Bruce .
GROUPS GEOMETRY AND DYNAMICS, 2013, 7 (01) :39-107
[6]  
Bourgain J, 2001, OPTIMAL CONTROL AND PARTIAL DIFFERENTIAL EQUATIONS, P439
[7]   How to recognize constant functions.: Connections with Sobolev spaces [J].
Brézis, H .
RUSSIAN MATHEMATICAL SURVEYS, 2002, 57 (04) :693-708
[8]   Whether p-conductive homogeneity holds depends on p [J].
Cao, Shiping ;
Chen, Zhen-Qing .
JOURNAL OF FRACTAL GEOMETRY, 2024, 12 (1-2) :93-104
[9]   ON KIGAMI'S CONJECTURE OF THE EMBEDDING Wp(K) ⊂ C(K) [J].
Cao, Shiping ;
Chen, Zhen-Qing ;
Kumagai, Takashi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 152 (08) :3393-3402
[10]  
Piaggio MC, 2013, ANN SCI ECOLE NORM S, V46, P495