Implicit Latent Variable Model for Scene-Consistent Motion Forecasting

被引:63
作者
Casas, Sergio [1 ,2 ]
Gulino, Cole [1 ]
Suo, Simon [1 ,2 ]
Luo, Katie [1 ]
Liao, Renjie [1 ,2 ]
Urtasun, Raquel [1 ,2 ]
机构
[1] Uber ATG, Toronto, ON, Canada
[2] Univ Toronto, Toronto, ON, Canada
来源
COMPUTER VISION - ECCV 2020, PT XXIII | 2020年 / 12368卷
关键词
D O I
10.1007/978-3-030-58592-1_37
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In order to plan a safe maneuver an autonomous vehicle must accurately perceive its environment, and understand the interactions among traffic participants. In this paper, we aim to learn scene-consistent motion forecasts of complex urban traffic directly from sensor data. In particular, we propose to characterize the joint distribution over future trajectories via an implicit latent variable model. We model the scene as an interaction graph and employ powerful graph neural networks to learn a distributed latent representation of the scene. Coupled with a deterministic decoder, we obtain trajectory samples that are consistent across traffic participants, achieving state-of-the-art results in motion forecasting and interaction understanding. Last but not least, we demonstrate that our motion forecasts result in safer and more comfortable motion planning.
引用
收藏
页码:624 / 641
页数:18
相关论文
共 55 条
[41]  
Phan-Minh T., 2019, arXiv
[42]  
Ratliff N. D., 2006, P 23 INT C MACH LEAR, P729
[43]  
Rhinehart N, 2019, Arxiv, DOI arXiv:1905.01296
[44]   R2P2: A ReparameteRized Pushforward Policy for Diverse, Precise Generative Path Forecasting [J].
Rhinehart, Nicholas ;
Kitani, Kris M. ;
Vernaza, Paul .
COMPUTER VISION - ECCV 2018, PT XIII, 2018, 11217 :794-811
[45]   Scene Compliant Trajectory Forecast With Agent-Centric Spatio-Temporal Grids [J].
Ridel, Daniela ;
Deo, Nachiket ;
Wolf, Denis ;
Trivedi, Mohan .
IEEE ROBOTICS AND AUTOMATION LETTERS, 2020, 5 (02) :2816-2823
[46]  
Ross S, 2011, JMLR WORKSHOP C P
[47]  
Sadat A, 2019, Arxiv, DOI arXiv:1910.04586
[48]  
Sohn K, 2015, ADV NEUR IN, V28
[49]  
Tang YC, 2019, ADV NEUR IN, V32
[50]   Congested traffic states in empirical observations and microscopic simulations [J].
Treiber, M ;
Hennecke, A ;
Helbing, D .
PHYSICAL REVIEW E, 2000, 62 (02) :1805-1824