Representative Graph Neural Network

被引:29
作者
Yu, Changqian [1 ,2 ]
Liu, Yifan [2 ]
Gao, Changxin [1 ]
Shen, Chunhua [2 ]
Sang, Nong [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automat, Key Lab Image Proc & Intelligent Control, Wuhan, Peoples R China
[2] Univ Adelaide, Adelaide, SA, Australia
来源
COMPUTER VISION - ECCV 2020, PT VII | 2020年 / 12352卷
基金
中国国家自然科学基金;
关键词
Representative graph; Dynamic sampling; Semantic segmentation; Deep learning;
D O I
10.1007/978-3-030-58571-6_23
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Non-local operation is widely explored to model the long-range dependencies. However, the redundant computation in this operation leads to a prohibitive complexity. In this paper, we present a Representative Graph (RepGraph) layer to dynamically sample a few representative features, which dramatically reduces redundancy. Instead of propagating the messages from all positions, our RepGraph layer computes the response of one node merely with a few representative nodes. The locations of representative nodes come from a learned spatial offset matrix. The RepGraph layer is flexible to integrate into many visual architectures and combine with other operations. With the application of semantic segmentation, without any bells and whistles, our RepGraph network can compete or perform favourably against the state-of-the-art methods on three challenging benchmarks: ADE20K, Cityscapes, and PASCAL-Context datasets. In the task of object detection, our RepGraph layer can also improve the performance on the COCO dataset compared to the non-local operation. Code is available at https://git.io/RepGraph.
引用
收藏
页码:379 / 396
页数:18
相关论文
共 55 条
[1]  
[Anonymous], 2018, arXiv
[2]   A non-local algorithm for image denoising [J].
Buades, A ;
Coll, B ;
Morel, JM .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2005, :60-65
[3]  
Cao Y., 2019, arXiv
[4]   DeepLab: Semantic Image Segmentation with Deep Convolutional Nets, Atrous Convolution, and Fully Connected CRFs [J].
Chen, Liang-Chieh ;
Papandreou, George ;
Kokkinos, Iasonas ;
Murphy, Kevin ;
Yuille, Alan L. .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (04) :834-848
[5]  
Chen LB, 2017, IEEE INT SYMP NANO, P1, DOI 10.1109/NANOARCH.2017.8053709
[6]   Graph-Based Global Reasoning Networks [J].
Chen, Yunpeng ;
Rohrbach, Marcus ;
Yan, Zhicheng ;
Yan, Shuicheng ;
Feng, Jiashi ;
Kalantidis, Yannis .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :433-442
[7]  
Chen YP, 2018, ADV NEUR IN, V31
[8]   The Cityscapes Dataset for Semantic Urban Scene Understanding [J].
Cordts, Marius ;
Omran, Mohamed ;
Ramos, Sebastian ;
Rehfeld, Timo ;
Enzweiler, Markus ;
Benenson, Rodrigo ;
Franke, Uwe ;
Roth, Stefan ;
Schiele, Bernt .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :3213-3223
[9]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[10]   Context Contrasted Feature and Gated Multi-scale Aggregation for Scene Segmentation [J].
Ding, Henghui ;
Jiang, Xudong ;
Shuai, Bing ;
Liu, Ai Qun ;
Wang, Gang .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2393-2402