Optimising Monotone Chance-Constrained Submodular Functions Using Evolutionary Multi-objective Algorithms

被引:33
作者
Neumann, Aneta [1 ]
Neumann, Frank [1 ]
机构
[1] Univ Adelaide, Sch Comp Sci, Optimisat & Logist, Adelaide, SA, Australia
来源
PARALLEL PROBLEM SOLVING FROM NATURE - PPSN XVI, PT I | 2020年 / 12269卷
基金
澳大利亚研究理事会;
关键词
OPTIMIZATION;
D O I
10.1007/978-3-030-58112-1_28
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Many real-world optimisation problems can be stated in terms of submodular functions. A lot of evolutionary multi-objective algorithms have recently been analyzed and applied to submodular problems with different types of constraints. We present a first runtime analysis of evolutionary multi-objective algorithms for chance-constrained submodular functions. Here, the constraint involves stochastic components and the constraint can only be violated with a small probability of a. We show that the GSEMO algorithm obtains the same worst case performance guarantees as recently analyzed greedy algorithms. Furthermore, we investigate the behavior of evolutionary multi-objective algorithms such as GSEMO and NSGA-II on different submodular chance constrained network problems. Our experimental results show that this leads to significant performance improvements compared to the greedy algorithm.
引用
收藏
页码:404 / 417
页数:14
相关论文
共 36 条
[11]  
Giel O, 2003, LECT NOTES COMPUT SC, V2607, P415
[12]  
Golovin D, 2011, J ARTIF INTELL RES, V42, P427
[13]  
Harshaw C, 2019, PR MACH LEARN RES, V97
[14]  
Jansen T., 2013, NATURAL COMPUTING SE, DOI [10.1007/978-3-642-17339-4, DOI 10.1007/978-3-642-17339-4]
[15]  
Kempe D, 2003, P 9 ACM SIGKDD INT C, DOI [DOI 10.1145/956750.956769, 10.1145/956750.956769]
[16]   The budgeted maximum coverage problem [J].
Khuller, S ;
Moss, A ;
Naor, JS .
INFORMATION PROCESSING LETTERS, 1999, 70 (01) :39-45
[17]  
Krause A., 2007, AAAI, V7, P1650
[18]  
Krause A, 2014, TRACTABILITY, P71
[19]  
Lee J, 2009, ACM S THEORY COMPUT, P323
[20]  
Leskovec J, 2007, KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, P420