Enhancing PV power forecasting through feature selection and artificial neural networks: a case study

被引:0
作者
Ali, Mokhtar [1 ]
Rabehi, Abdelhalim [1 ]
Souahlia, Abdelkerim [1 ]
Guermoui, Mawloud [2 ]
Teta, Ali [1 ]
Tibermacine, Imad Eddine [3 ]
Rabehi, Abdelaziz [1 ]
Benghanem, Mohamed [4 ]
Agajie, Takele Ferede [5 ]
机构
[1] Univ Djelfa, Telecommun & Smart Syst Lab, POB 3117, Djelfa 17000, Algeria
[2] Ctr Dev Energies Renouvelables, Unite Rech Appl Energies Renouvelables, URAER, CDER, Ghardaia 47133, Algeria
[3] Sapienza Univ Rome, Dept Comp Control & Management Engn, I-00185 Rome, Italy
[4] Islamic Univ Madinah, Fac Sci, Phys Dept, Madinah 42351, Saudi Arabia
[5] Debre Markos Univ, Inst Technol, Dept Elect & Comp Engn, POB 269, Debre Markos, Ethiopia
来源
SCIENTIFIC REPORTS | 2025年 / 15卷 / 01期
关键词
PV power; Renewable energy; Features selection; Forecasting; Artificial neural networks; SOLAR-RADIATION; SYSTEM;
D O I
10.1038/s41598-025-07038-x
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This paper presents a comprehensive investigation into enhancing photovoltaic (PV) power forecasting by systematically integrating feature selection techniques with artificial neural networks. Addressing the growing demand for reliable renewable energy forecasting, the study employs several feature selection methods, including ReliefF, minimum correlation, Chi-square test, and others, to identify the most relevant predictors for PV output prediction. Two predictive models, the multilayer perceptron (MLP) and long short-term memory (LSTM) networks, are developed and tested on a real-world dataset from southern Algeria. The results demonstrate that applying feature selection significantly improves forecasting accuracy. For instance, integrating ReliefF with MLP reduced the normalized mean absolute error (nMAE) to 9.21% with an R2 of 0.9608, while the best LSTM configuration achieved an nMAE of 9.29% and an R2 of 0.946 when using Chi-square selected features. These findings confirm that careful feature selection enhances model performance, reduces complexity, and ensures better generalization, offering valuable insights for more efficient solar energy management and grid stability.
引用
收藏
页数:17
相关论文
共 41 条
[1]   Evaluation of Different Models for Global Solar Radiation Components Assessment [J].
Abdelhalim Rabehi ;
Rabehi A. ;
Guermoui M. .
Applied Solar Energy (English translation of Geliotekhnika), 2021, 57 (01) :81-92
[2]   Review of photovoltaic power forecasting [J].
Antonanzas, J. ;
Osorio, N. ;
Escobar, R. ;
Urraca, R. ;
Martinez-de-Pison, F. J. ;
Antonanzas-Torres, F. .
SOLAR ENERGY, 2016, 136 :78-111
[3]   Heliostat field optimization and comparisons between biomimetic spiral and radial-staggered layouts for different heliostat shapes [J].
Belaid, Abdelfetah ;
Filali, Abdelkader ;
Hassani, Samir ;
Arrif, Toufik ;
Guermoui, Mawloud ;
Gama, Amor ;
Bouakba, Mustapha .
SOLAR ENERGY, 2022, 238 :162-177
[4]   Assessment of compressive strength of eco-concrete reinforced using machine learning tools [J].
Bentegri, Houcine ;
Rabehi, Mohamed ;
Kherfane, Samir ;
Nahool, Tarek Abdo ;
Rabehi, Abdelaziz ;
Guermoui, Mawloud ;
Alhussan, Amel Ali ;
Khafaga, Doaa Sami ;
Eid, Marwa M. ;
El-Kenawy, El-Sayed M. .
SCIENTIFIC REPORTS, 2025, 15 (01)
[5]   Probabilistic solar power forecasting in smart grids using distributed information [J].
Bessa, R. J. ;
Trindade, A. ;
Silva, Catia S. P. ;
Miranda, V. .
INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2015, 72 :16-23
[6]   MPPT algorithm based on metaheuristic techniques (PSO & GA) dedicated to improve wind energy water pumping system performance [J].
Bouchakour, Abdelhak ;
Zarour, Laid ;
Bessous, Noureddine ;
Bechouat, Mohcene ;
Borni, Abdelhalim ;
Zaghba, Layachi ;
Rabehi, Abdelaziz ;
Alwabli, Abdullah ;
El-Abd, Mohammed ;
Ghoneim, Sherif S. M. .
SCIENTIFIC REPORTS, 2024, 14 (01)
[7]   Vibration signal analysis for rolling bearings faults diagnosis based on deep-shallow features fusion [J].
Chennana, Ahmed ;
Megherbi, Ahmed Chaouki ;
Bessous, Noureddine ;
Sbaa, Salim ;
Teta, Ali ;
Belabbaci, El Ouanas ;
Rabehi, Abdelaziz ;
Guermoui, Mawloud ;
Agajie, Takele Ferede .
SCIENTIFIC REPORTS, 2025, 15 (01)
[8]  
Dhanya R., 2020, Procedia Computer Science, V171, P1561, DOI 10.1016/j.procs.2020.04.167
[9]   A new evolutionary forest model via incremental tree selection for short-term global solar irradiance forecasting under six various climatic zones [J].
El-Amarty, Naima ;
Marzouq, Manal ;
El Fadili, Hakim ;
Bennani, Saad Dosse ;
Ruano, Antonio ;
Rabehi, Abdelaziz .
ENERGY CONVERSION AND MANAGEMENT, 2024, 310
[10]   Evaluation and development of empirical models for estimating daily and monthly mean daily diffuse horizontal solar radiation for different climatic regions of China [J].
Fan, Junliang ;
Wu, Lifeng ;
Zhang, Fucang ;
Cai, Huanjie ;
Ma, Xin ;
Bai, Hua .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2019, 105 :168-186