Fast simulation of the electromagnetic calorimeter response using Self-Attention Generative Adversarial Networks

被引:2
作者
Ratnikov, Fedor [1 ]
Rogachev, Alexander [1 ]
机构
[1] HSE Univ, 11 Pokrovsky Blvd, Moscow, Russia
来源
25TH INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH ENERGY AND NUCLEAR PHYSICS, CHEP 2021 | 2021年 / 251卷
关键词
D O I
10.1051/epjconf/202125103043
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Simulation is one of the key components in high energy physics. Historically it relies on the Monte Carlo methods which require a tremendous amount of computation resources. These methods may have difficulties with the expected High Luminosity Large Hadron Collider need, so the experiment is in urgent need of new fast simulation techniques. The application of Generative Adversarial Networks is a promising solution to speed up the simulation while providing the necessary physics performance. In this paper we propose the Self-Attention Generative Adversarial Network as a possible improvement of the network architecture. The application is demonstrated on the performance of generating responses of the LHCb type of the electromagnetic calorimeter.
引用
收藏
页数:8
相关论文
共 11 条
[1]  
Agostinelli S., 2003, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, V506, P250, DOI DOI 10.1016/S0168-9002(03)01368-8
[2]   The LHCb Detector at the LHC [J].
Alves, A. Augusto, Jr. ;
Andrade Filho, L. M. ;
Barbosa, A. F. ;
Bediaga, I. ;
Cernicchiaro, G. ;
Guerrer, G. ;
Lima, H. P., Jr. ;
Machado, A. A. ;
Magnin, J. ;
Marujo, F. ;
de Miranda, J. M. ;
Reis, A. ;
Santos, A. ;
Toledo, A. ;
Akiba, K. ;
Amato, S. ;
de Paula, B. ;
de Paula, L. ;
da Silva, T. ;
Gandelman, M. ;
Lopes, J. H. ;
Marechal, B. ;
Moraes, D. ;
Polycarpo, E. ;
Rodrigues, F. ;
Ballansat, J. ;
Bastian, Y. ;
Boget, D. ;
De Bonis, I. ;
Coco, V. ;
David, P. Y. ;
Decamp, D. ;
Delebecque, P. ;
Drancourt, C. ;
Dumont-Dayot, N. ;
Girard, C. ;
Lieunard, B. ;
Minard, M. N. ;
Pietrzyk, B. ;
Rambure, T. ;
Rospabe, G. ;
T'Jampens, S. ;
Ajaltouni, Z. ;
Bohner, G. ;
Bonnefoy, R. ;
Borras, D. ;
Carloganu, C. ;
Chanal, H. ;
Conte, E. ;
Cornat, R. .
JOURNAL OF INSTRUMENTATION, 2008, 3
[3]  
Chekalina V., 2019, EPJ WEB C
[4]  
Gulrajani I, 2017, ADV NEUR IN, V30
[5]  
Jiang Yifan, 2021, arXiv
[6]  
Miyato T., 2018, INT C LEARN REPR
[7]  
Naeem M. F., 2020, PMLR, P7176
[8]   CALOGAN: Simulating 3D high energy particle showers in multilayer electromagnetic calorimeters with generative adversarial networks [J].
Paganini, Michela ;
de Oliveira, Luke ;
Nachman, Benjamin .
PHYSICAL REVIEW D, 2018, 97 (01)
[9]  
Sajjadi M., 2018, C NEUR INF PROC SYST
[10]  
Sergeev F., 2021, Journal o fPhysics: Conference Series