DOUBLE-SIDED HEAT DISSIPATION FOR ACOUSTIC RESONATORS BASED ON LITHIUM NIOBATE ON SAPPHIRE

被引:0
作者
Qian, Fangsheng [1 ]
Ren, Zijun [1 ]
Wei, Wei [1 ]
Xu, Jiashuai [1 ]
Zheng, Junyan [1 ]
Liu, Xingyu [1 ]
Yang, Yansong [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Hong Kong, Peoples R China
来源
2025 IEEE 38TH INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, MEMS | 2025年
基金
中国国家自然科学基金;
关键词
Acoustic resonator; lithium niobate; heat dissipation; energy confinement; power handling;
D O I
10.1109/MEMS61431.2025.10918221
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work introduces a pioneering design of a double-sided heat-dissipated acoustic resonator that significantly enhances cooling capabilities, while achieving a high admittance ratio (AR) of 61.9 dB and a large coupling factor (k(t)(2)) of 17.41%, even with mounting a 2.8-mu m-thick heat sink. The proposed devices employ shear horizontal (SH mode) waves on an X-cut lithium niobate (LiNbO3) thin film/Sapphire platform. An optimized thick amorphous silicon layer with near-zero residual stress serves as an additional heat dissipation pathway without compromising acoustic energy confinement. This double-sided heat dissipation design enables the acoustic devices to operate at higher power densities within highly integrated systems
引用
收藏
页码:1165 / 1168
页数:4
相关论文
共 9 条
[1]   Fabrication and characterization of amorphous Si films by PECVD for MEMS [J].
Chung, CK ;
Tsai, MQ ;
Tsai, PH ;
Lee, C .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2005, 15 (01) :136-142
[2]   Thermal conductivity and air-mediated losses in periodic porous silicon membranes at high temperatures [J].
Graczykowski, B. ;
El Sachat, A. ;
Reparaz, J. S. ;
Sledzinska, M. ;
Wagner, M. R. ;
Chavez-Angel, E. ;
Wu, Y. ;
Volz, S. ;
Wu, Y. ;
Alzina, F. ;
Sotomayor Torres, C. M. .
NATURE COMMUNICATIONS, 2017, 8
[3]   Thick and low-stress PECVD amorphous silicon for MEMS applications [J].
Iliescu, Ciprian ;
Chen, Bangtao .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2008, 18 (01)
[4]  
Johlin E., 2012, Master Thesis, P1
[5]   Gigahertz Low-Loss and High Power Handling Acoustic Delay Lines Using Thin-Film Lithium-Niobate-on-Sapphire [J].
Lu, Ruochen ;
Yang, Yansong ;
Hassanien, Ahmed E. ;
Gong, Songbin .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (07) :3246-3254
[6]   A Snapshot in Time [J].
Ruby, Rich .
IEEE MICROWAVE MAGAZINE, 2015, 16 (07) :46-59
[7]   Impacts of material design on heat dissipation and power handling of acoustic-wave devices based on bonding wafers [J].
Shen, Junyao ;
Yao, Wenfeng ;
Workie, Temesgen Bailie ;
Bao, Jingfu ;
Hashimoto, Ken-ya .
APPLIED THERMAL ENGINEERING, 2025, 258
[8]   High-Performance Surface Acoustic Wave Devices Using LiNbO3/SiO2/SiC Multilayered Substrates [J].
Shen, Junyao ;
Fu, Sulei ;
Su, Rongxuan ;
Xu, Huiping ;
Lu, Zengtian ;
Xu, Zhibin ;
Luo, Jingting ;
Zeng, Fei ;
Song, Cheng ;
Wang, Weibiao ;
Pan, Feng .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2021, 69 (08) :3693-3705
[9]   Surface Acoustic Wave Devices Using Lithium Niobate on Silicon Carbide [J].
Zhang, Shibin ;
Lu, Ruochen ;
Zhou, Hongyan ;
Link, Steffen ;
Yang, Yansong ;
Li, Zhongxu ;
Huang, Kai ;
Ou, Xin ;
Gong, Songbin .
IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2020, 68 (09) :3653-3666