共 128 条
[51]
Glasby L T, Gubsch K, Bence R, Et al., DigiMOF: a database of metal-organic framework synthesis information generated via text mining, Chemistry of Materials, 35, 11, pp. 4510-4524, (2023)
[52]
Domingues N P, Moosavi S M, Talirz L, Et al., Using genetic algorithms to systematically improve the synthesis conditions of Al-PMOF, Communications Chemistry, 5, 1, (2022)
[53]
Tshitoyan V, Dagdelen J, Weston L, Et al., Unsupervised word embeddings capture latent knowledge from materials science literature, Nature, 571, 7763, pp. 95-98, (2019)
[54]
First E L, Floudas C A., MOFomics: computational pore characterization of metal-organic frameworks, Microporous and Mesoporous Materials, 165, pp. 32-39, (2013)
[55]
Rosen A S, Iyer S M, Ray D, Et al., Machine learning the quantum-chemical properties of metal-organic frameworks for accelerated materials discovery, Matter, 4, 5, pp. 1578-1597, (2021)
[56]
Krallinger M, Rabal O, Lourenco A, Et al., Information retrieval and text mining technologies for chemistry, Chemical Reviews, 117, 12, pp. 7673-7761, (2017)
[57]
Luo Y, Bag S, Zaremba O, Et al., MOF synthesis prediction enabled by automatic data mining and machine learning, Angewandte Chemie International Edition, 61, 19, (2022)
[58]
Hai G T, Gao H Y, Zhao G X, Et al., Difference between metal-S and metal-O bond orders: a descriptor of oxygen evolution activity for isolated metal atom-doped MoS<sub>2</sub> nanosheets, iScience, 20, pp. 481-488, (2019)
[59]
Doitomi K, Hirao H., Hybrid computational approaches for deriving quantum mechanical insights into metal-organic frameworks, Tetrahedron Letters, 58, 24, pp. 2309-2317, (2017)
[60]
Thai H T., Machine learning for structural engineering: a state-of-the-art review, Structures, 38, pp. 448-491, (2022)