Subsonic Solutions for the Multidimensional Euler-Poisson System of Plasma

被引:0
作者
Zhou, Yan [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Math, Shanghai, Peoples R China
关键词
Euler-Poisson system; potential flow; second-order elliptic system; subsonic flow; TRANSONIC SHOCK SOLUTIONS; STABILITY; MODEL; FLOW;
D O I
10.1002/mma.11190
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we investigate the steady Euler-Poisson system that governs the dynamics of a collisionless ion-electron plasma. We establish the unique existence and structural stability of subsonic potential flow in a multidimensional nozzle. This is accomplished by prescribing the electric potential difference on a noninsulated boundary from a fixed point at the exit, along with specifying the pressure at the exit. The Euler-Poisson system is reformulated into a second-order quasilinear elliptic system, and the key ingredient of the analysis is to gain the C1,alpha$$ {C}<^>{1,\alpha } $$ estimate of the corresponding linearized system.
引用
收藏
页数:10
相关论文
共 19 条
[1]  
Ascher U. M., 1991, Mathematical Models & Methods in Applied Sciences, V1, P347, DOI 10.1142/S0218202591000174
[2]   3-D axisymmetric subsonic flows with nonzero swirl for the compressible Euler-Poisson system [J].
Bae, Myoungjean ;
Weng, Shangkun .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2018, 35 (01) :161-186
[3]   Subsonic Flow for the Multidimensional Euler-Poisson System [J].
Bae, Myoungjean ;
Duan, Ben ;
Xie, Chunjing .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 220 (01) :155-191
[4]   Two-dimensional subsonic flows with self-gravitation in bounded domain [J].
Bae, Myoungjean ;
Duan, Ben ;
Xie, Chunjing .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2015, 25 (14) :2721-2747
[5]   SUBSONIC SOLUTIONS FOR STEADY EULER-POISSON SYSTEM IN TWO-DIMENSIONAL NOZZLES [J].
Bae, Myoungjean ;
Duan, Ben ;
Xie, Chunjing .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (05) :3455-3480
[6]  
Chen, 1984, Introduction to Plasma Physics and Controlled Fusion, V1
[7]   A STEADY-STATE POTENTIAL FLOW MODEL FOR SEMICONDUCTORS [J].
DEGOND, P ;
MARKOWICH, PA .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1993, 165 :87-98
[8]  
Degond P., 1990, APPL MATH LETT, V3, P25, DOI DOI 10.1016/0893-9659(90)90130-4
[9]  
GAMBA IM, 1992, COMMUN PART DIFF EQ, V17, P553
[10]  
Gilbarg David, 1977, Elliptic partial differential equations of second order, V224