Performance Evaluation of ANOVA and RFE Algorithms for Classifying Microarray Dataset Using SVM

被引:12
作者
Abdulsalam, Sulaiman Olaniyi [1 ]
Mohammed, Abubakar Adamu [1 ]
Ajao, Jumoke Falilat [1 ]
Babatunde, Ronke S. [1 ]
Ogundokun, Roseline Oluwaseun [2 ]
Nnodim, Chiebuka T. [2 ]
Arowolo, Micheal Olaolu [1 ]
机构
[1] Kwara State Univ, Malete, Nigeria
[2] Landmark Univ, Omu Aran, Nigeria
来源
INFORMATION SYSTEMS, EMCIS 2020 | 2020年 / 402卷
关键词
SVM-RFE; ANOVA; Microarray; SVM; Cancer;
D O I
10.1007/978-3-030-63396-7_32
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A significant application of microarray gene expression data is the classification and prediction of biological models. An essential component of data analysis is dimension reduction. This study presents a comparison study on a reduced data using Analysis of Variance (ANOVA) and Recursive Feature Elimination (RFE) feature selection dimension reduction techniques, and evaluates the relative performance evaluation of classification procedures of Support Vector Machine (SVM) classification technique. In this study, an accuracy and computational performance metrics of the processes were carried out on a microarray colon cancer dataset for classification, SVM-RFE achieved 93% compared to ANOVA with 87% accuracy in the classification output result.
引用
收藏
页码:480 / 492
页数:13
相关论文
共 36 条
[1]   Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays [J].
Alon, U ;
Barkai, N ;
Notterman, DA ;
Gish, K ;
Ybarra, S ;
Mack, D ;
Levine, AJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1999, 96 (12) :6745-6750
[2]   Social Media Acceptance and Use Among University Students for Learning Purpose Using UTAUT Model [J].
Awotunde, Joseph Bamidele ;
Ogundokun, Roseline Oluwaseun ;
Ayo, Femi E. ;
Ajamu, Gbemisola J. ;
Adeniyi, Emmanuel Abidemi ;
Ogundokun, Eyitayo Opeyemi .
INFORMATION SYSTEMS ARCHITECTURE AND TECHNOLOGY, ISAT 2019, PT I, 2020, 1050 :91-102
[3]   On the classification techniques in data mining for microarray data classification [J].
Aydadenta, Husna ;
Adiwijaya .
INTERNATIONAL CONFERENCE ON DATA AND INFORMATION SCIENCE (ICODIS), 2018, 971
[4]   Design and computational analysis of single-cell RNA-sequencing experiments [J].
Bacher, Rhonda ;
Kendziorski, Christina .
GENOME BIOLOGY, 2016, 17
[5]  
Balamurugan M., 2017, BIOMED PHARMACOL J, V10, P1823, DOI [DOI 10.13005/bpj/1299, 10.13005/bpj/1299]
[6]  
Bezanson J, 2012, Arxiv, DOI [arXiv:1209.5145, 10.48550/arXiv.1209.5145, DOI 10.48550/ARXIV.1209.5145]
[7]  
Bhavsar H., 2012, Int. J. Adv. Res. Comput. Eng. Technol., V1, P185
[8]   RNA-seq analyses of changes in the Anopheles gambiae transcriptome associated with resistance to pyrethroids in Kenya: identification of candidate-resistance genes and candidate-resistance SNPs [J].
Bonizzoni, Mariangela ;
Ochomo, Eric ;
Dunn, William Augustine ;
Britton, Monica ;
Afrane, Yaw ;
Zhou, Guofa ;
Hartsel, Joshua ;
Lee, Ming-Chieh ;
Xu, Jiabao ;
Githeko, Andrew ;
Fass, Joseph ;
Yan, Guiyun .
PARASITES & VECTORS, 2015, 8
[9]   LIBSVM: A Library for Support Vector Machines [J].
Chang, Chih-Chung ;
Lin, Chih-Jen .
ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2011, 2 (03)
[10]   A survey of best practices for RNA-seq data analysis [J].
Conesa, Ana ;
Madrigal, Pedro ;
Tarazona, Sonia ;
Gomez-Cabrero, David ;
Cervera, Alejandra ;
McPherson, Andrew ;
Szczesniak, Michal Wojciech ;
Gaffney, Daniel J. ;
Elo, Laura L. ;
Zhang, Xuegong ;
Mortazavi, Ali .
GENOME BIOLOGY, 2016, 17