A Strict ISS-Lyapunov Function for LTV Systems With Non-Time-Differentiable Dynamics

被引:0
作者
Mazenc, Frederic [1 ,2 ]
Maghenem, Mohamed [3 ]
Loria, Antonio [4 ]
机构
[1] CNRS, EPI DISCO, Inria, F-91192 Gif Sur Yvette, France
[2] CNRS, Lab Signaux & Syst, F-91192 Gif Sur Yvette, France
[3] Univ Grenoble Alpes, Dept Control, GIPSA Lab, CNRS,Grenoble INP, F-38400 St Martin Dhres, France
[4] CNRS, Lab signaux & Syst, F-91190 Gif Sur Yvette, France
来源
IEEE CONTROL SYSTEMS LETTERS | 2025年 / 9卷
关键词
Lyapunov methods; Time-varying systems; Asymptotic stability; Adaptive control; Stability criteria; Observers; Vectors; Training; Data mining; Artificial intelligence; Lyapunov functions; time-varying systems; persistency of excitation; ASYMPTOTIC STABILITY; EXPONENTIAL STABILITY; VARYING SYSTEMS; EQUATIONS;
D O I
10.1109/LCSYS.2025.3578487
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study stability and robustness for a large class of linear time-varying systems under the assumption that the system possesses some kind of excitation which is necessary for uniform attractivity of the origin, but not even boundedness of the solutions is assumed a priori. Our main statements provide strict Lyapunov functions, i.e., having a strictly negative-definite derivative, constructed based on an initial candidate whose derivative is sign undefined. The Lyapunov function that we construct guarantees uniform global asymptotic stability and input-to-state stability with respect to bounded additive inputs. As a byproduct of our main results, we provide a Lyapunov function for a class of systems reminiscent of model-reference adaptive control with non-differentiable regressors.
引用
收藏
页码:1081 / 1086
页数:6
相关论文
共 25 条
[1]   New asymptotic stability criterion for nonlinear time-variant differential equations [J].
Aeyels, D ;
Peuteman, J .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (07) :968-971
[2]  
Anderson B D., 1986, Stability of adaptive Systems: Passivity and Averaging Analysis
[3]   EXPONENTIAL STABILITY OF LINEAR EQUATIONS ARISING IN ADAPTIVE IDENTIFICATION [J].
ANDERSON, BDO .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1977, 22 (01) :83-88
[4]  
Annaswamy A. M., 1989, STABLE ADAPTIVE SYST
[5]  
Barbasin E.A., 1954, PRIKL M MEH, V18, P345
[6]  
Besancon G, 2007, LECT NOTES CONTR INF, V363, P1
[7]  
Chowdhury N. R., 2018, Int. J. Control, V91, P131
[8]   Explicit convergence rates for MRAC-type systems [J].
Loría, A .
AUTOMATICA, 2004, 40 (08) :1465-1468
[9]   Uniform exponential stability of linear time-varying systems:: revisited [J].
Loría, A ;
Panteley, E .
SYSTEMS & CONTROL LETTERS, 2002, 47 (01) :13-24
[10]   Strict Lyapunov Functions or Model Reference Adaptive Control: Application to Lagrangian Systems [J].
Loria, Antonio ;
Panteley, Elena ;
Maghenem, Mohamed .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2019, 64 (07) :3040-3045