MuCAN: Multi-correspondence Aggregation Network for Video Super-Resolution

被引:91
作者
Li, Wenbo [1 ]
Tao, Xin [2 ]
Guo, Taian [3 ]
Qi, Lu [1 ]
Lu, Jiangbo [4 ]
Jia, Jiaya [1 ,4 ]
机构
[1] Chinese Univ Hong Kong, Sha Tin, Hong Kong, Peoples R China
[2] Kuaishou Technol, Beijing, Peoples R China
[3] Tsinghua Univ, Beijing, Peoples R China
[4] Smartmore Technol, Shenzhen, Peoples R China
来源
COMPUTER VISION - ECCV 2020, PT X | 2020年 / 12355卷
关键词
Video super-resolution; Correspondence aggregation; IMAGE SUPERRESOLUTION;
D O I
10.1007/978-3-030-58607-2_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Video super-resolution (VSR) aims to utilize multiple low-resolution frames to generate a high-resolution prediction for each frame. In this process, inter- and intra-frames are the key sources for exploiting temporal and spatial information. However, there are a couple of limitations for existing VSR methods. First, optical flow is often used to establish one-on-one temporal correspondences. But flow estimation itself is error-prone and hence largely affects the ultimate recovery result. Second, similar patterns existing in natural images are rarely exploited for the VSR task. Motivated by these findings, we propose a temporal multi-correspondence aggregation strategy to leverage most similar patches across frames, and also a cross-scale nonlocal-correspondence aggregation scheme to explore self-similarity of images across scales. Based on these two novel modules, we build an effective multi-correspondence aggregation network (MuCAN) for VSR. Our method achieves state-of-the-art results on multiple benchmark datasets. Extensive experiments justify the effectiveness of our method.
引用
收藏
页码:335 / 351
页数:17
相关论文
共 48 条
[1]   A Naturalistic Open Source Movie for Optical Flow Evaluation [J].
Butler, Daniel J. ;
Wulff, Jonas ;
Stanley, Garrett B. ;
Black, Michael J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :611-625
[2]   Real-Time Video Super-Resolution with Spatio-Temporal Networks and Motion Compensation [J].
Caballero, Jose ;
Ledig, Christian ;
Aitken, Andrew ;
Acosta, Alejandro ;
Totz, Johannes ;
Wang, Zehan ;
Shi, Wenzhe .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2848-2857
[3]   Deformable Convolutional Networks [J].
Dai, Jifeng ;
Qi, Haozhi ;
Xiong, Yuwen ;
Li, Yi ;
Zhang, Guodong ;
Hu, Han ;
Wei, Yichen .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :764-773
[4]   Accelerating the Super-Resolution Convolutional Neural Network [J].
Dong, Chao ;
Loy, Chen Change ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2016, PT II, 2016, 9906 :391-407
[5]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[6]   FlowNet: Learning Optical Flow with Convolutional Networks [J].
Dosovitskiy, Alexey ;
Fischer, Philipp ;
Ilg, Eddy ;
Haeusser, Philip ;
Hazirbas, Caner ;
Golkov, Vladimir ;
van der Smagt, Patrick ;
Cremers, Daniel ;
Brox, Thomas .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :2758-2766
[7]   Image and Video Upscaling from Local Self-Examples [J].
Freedman, Gilad ;
Fattal, Raanan .
ACM TRANSACTIONS ON GRAPHICS, 2011, 30 (02)
[8]   Example-based super-resolution [J].
Freeman, WT ;
Jones, TR ;
Pasztor, EC .
IEEE COMPUTER GRAPHICS AND APPLICATIONS, 2002, 22 (02) :56-65
[9]  
Glasner D, 2009, IEEE I CONF COMP VIS, P349, DOI 10.1109/ICCV.2009.5459271
[10]   Recurrent Back-Projection Network for Video Super-Resolution [J].
Haris, Muhammad ;
Shakhnarovich, Greg ;
Ukita, Norimichi .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :3892-3901