AdvPC: Transferable Adversarial Perturbations on 3D Point Clouds

被引:84
作者
Hamdi, Abdullah [1 ]
Rojas, Sara [1 ]
Thabet, Ali [1 ]
Ghanem, Bernard [1 ]
机构
[1] King Abdullah Univ Sci & Technol KAUST, Thuwal, Saudi Arabia
来源
COMPUTER VISION - ECCV 2020, PT XII | 2020年 / 12357卷
关键词
D O I
10.1007/978-3-030-58610-2_15
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Deep neural networks are vulnerable to adversarial attacks, in which imperceptible perturbations to their input lead to erroneous network predictions. This phenomenon has been extensively studied in the image domain, and has only recently been extended to 3D point clouds. In this work, we present novel data-driven adversarial attacks against 3D point cloud networks. We aim to address the following problems in current 3D point cloud adversarial attacks: they do not transfer well between different networks, and they are easy to defend against via simple statistical methods. To this extent, we develop a new point cloud attack (dubbed AdvPC) that exploits the input data distribution by adding an adversarial loss, after Auto-Encoder reconstruction, to the objective it optimizes. AdvPC leads to perturbations that are resilient against current defenses, while remaining highly transferable compared to state-of-the-art attacks. We test AdvPC using four popular point cloud networks: PointNet, PointNet++ (MSG and SSG), and DGCNN. Our proposed attack increases the attack success rate by up to 40% for those transferred to unseen networks (transferability), while maintaining a high success rate on the attacked network. AdvPC also increases the ability to break defenses by up to 38% as compared to other baselines on the ModelNet40 dataset. The code is available at https://github.com/ajhamdi/ AdvPC.
引用
收藏
页码:241 / 257
页数:17
相关论文
共 38 条
[1]  
Achlioptas P, 2018, PR MACH LEARN RES, V80
[2]   Strike (With) a Pose: Neural Networks Are Easily Fooled by Strange Poses of Familiar Objects [J].
Alcorn, Michael A. ;
Li, Qi ;
Gong, Zhitao ;
Wang, Chengfei ;
Mai, Long ;
Ku, Wei-Shinn ;
Anh Nguyen .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :4840-4849
[3]   Unifying Knowledge Graph Learning and Recommendation: Towards a Better Understanding of User Preferences [J].
Cao, Yixin ;
Wang, Xiang ;
He, Xiangnan ;
Hu, Zikun ;
Chua, Tat-Seng .
WEB CONFERENCE 2019: PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE (WWW 2019), 2019, :151-161
[4]   Towards Evaluating the Robustness of Neural Networks [J].
Carlini, Nicholas ;
Wagner, David .
2017 IEEE SYMPOSIUM ON SECURITY AND PRIVACY (SP), 2017, :39-57
[5]   Shape Completion using 3D-Encoder-Predictor CNNs and Shape Synthesis [J].
Dai, Angela ;
Qi, Charles Ruizhongtai ;
Niessner, Matthias .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :6545-6554
[6]   Exploring Spatial Context for 3D Semantic Segmentation of Point Clouds [J].
Engelmann, Francis ;
Kontogianni, Theodora ;
Hermans, Alexander ;
Leibe, Bastian .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2017), 2017, :716-724
[7]  
Goodfellow IJ., 2014, CORR
[8]  
Hamdi A., 2019, CoRR abs/1904.04621
[9]  
Hamdi A., 2020, AAAI C ART INT
[10]   Recurrent Slice Networks for 3D Segmentation of Point Clouds [J].
Huang, Qiangui ;
Wang, Weiyue ;
Neumann, Ulrich .
2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, :2626-2635