Frequency estimation of 2-D harmonics in multiplicative and additive noise based on ESPRIT

被引:0
作者
Yang S. [1 ]
Jiang J. [1 ]
机构
[1] School of Electronic Engineering, Jiujiang University, Jiujiang
基金
中国国家自然科学基金;
关键词
ESPRIT; Frequency estimation; Multiplicative noise; Two-dimensional harmonic;
D O I
10.12720/jcm.11.4.411-416
中图分类号
学科分类号
摘要
This paper studies the frequency estimation of two-dimensional (2-D) harmonics in presence of multiplicative and additive noise. We construct a cyclic covariance matrix using a class of cyclic covariance of the 2-D harmonics. Exploiting the shift-invariance structure of the signal subspace, we extend ESPRIT to estimate the frequency pairs of 2-D harmonics in multiplicative and additive noise. The proposed method has high-resolution and can directly estimate the frequency pairs of 2-D harmonics without frequency pairing operation. Simulation results demonstrate the effectiveness of the proposed method. © 2016 Journal of Communications.
引用
收藏
页码:411 / 416
页数:5
相关论文
共 16 条
[1]  
Yang S., Li H., Jiang T., Detection of the number of two-dimensional harmonics in additive colored noise, Wireless Communications and Mobile Computing, 14, 8, pp. 761-769, (2014)
[2]  
Yang S., Li H., Jiang T., Detecting the number of 2-D harmonics in multiplicative and additive noise using enhanced matrix, Digital Signal Process., 22, 2, pp. 246-252, (2012)
[3]  
Chen F.J., Fung C.C., Kok C.W., Kwong S., Estimation of two-dimensional frequencies using modified matrix pencil method, IEEE Trans. on Signal Process., 22, 2, pp. 718-724, (2007)
[4]  
Rouquette S., Najim M., Estimation of frequencies and damping factors by two-dimensional ESPRIT type methods, IEEE Trans. on Signal Process., 49, 1, pp. 237-245, (2001)
[5]  
Ibrahim H.M., Gharieb R.R., Estimating two-dimensional frequencies by a cumulant-based FBLP method, IEEE Trans. on Signal Process., 47, 1, pp. 262-266, (1999)
[6]  
Odendaal J.W., Barnard E., Pistorius C.W.I., Two-dimensional superresolution radar imaging using the MUSIC algorithm, IEEE Trans. Antennas Propag., 42, 10, pp. 1386-1391, (1994)
[7]  
Anderson J.M.M., Giannakis G.B., 2-D harmonic retrieval using higher-order statistics, Multidimensional Systems and Signal Process., 6, 4, pp. 313-331, (1995)
[8]  
Giannakis G.B., Zhou G., Harmonics in multiplicative and additive noise: Parameter estimation using cyclic statistics, IEEE Trans. Signal Process., 43, 9, pp. 2217-2221, (1995)
[9]  
Wang F., Wang S., Dou H., Two-Dimensional parameter estimation using two-dimensional cyclic statistics, Acta Electronic Sinica, 31, 10, pp. 1522-1525, (2003)
[10]  
Yang S., Li H., Two-Dimensional harmonics parameters estimation using third-order cyclic-moments, Acta Electronic Sinica, 33, 10, pp. 1808-1811, (2005)