A Methodology for Non-Functional Property Evaluation of Machine Learning Models

被引:6
作者
Anisetti, Marco [1 ]
Ardagna, Claudio A. [1 ]
Damiani, Ernesto [2 ]
Panero, Paolo G. [3 ]
机构
[1] Univ Milan, Milan, Italy
[2] C2PS Khalifa Univ, Abu Dhabi, U Arab Emirates
[3] SORIS SpA, Turin, Italy
来源
12TH INTERNATIONAL CONFERENCE ON MANAGEMENT OF DIGITAL ECOSYSTEMS, MEDES 2020 | 2020年
关键词
Non-functional properties; Machine Learning Assurance; Multi-armed bandit;
D O I
10.1145/3415958.3433101
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The pervasive diffusion of Machine Learning (ML) in many critical domains and application scenarios has revolutionized implementation and working of modern IT systems. The behavior of modern systems often depends on the behavior of ML models, which are treated as black boxes, thus making automated decisions based on inference unpredictable. In this context, there is an increasing need of verifying the non-functional properties of ML models, such as, fairness and privacy, to the aim of providing certified ML-based applications and services. In this paper, we propose a methodology based on Multi-Armed Bandit for evaluating non-functional properties of ML models. Our methodology adopts Thompson sampling, Monte Carlo Simulation, and Value Remaining. An experimental evaluation in a real-world scenario is presented to prove the applicability of our approach in evaluating the fairness of different ML models.
引用
收藏
页码:38 / 45
页数:8
相关论文
共 46 条
[1]  
Adel T, 2019, AAAI CONF ARTIF INTE, P2412
[2]  
Agarwal A., 2018, Automated test generation to detect individual discrimination in ai models
[3]  
Ahn Y., 2019, IEEE Transactions on Visualization and Computer Graphics, V26, P1
[4]  
Anisetti M., 2012, Proceedings of the 2012 IEEE 19th International Conference on Web Services (ICWS), P122, DOI 10.1109/ICWS.2012.53
[5]  
Anisetti M., 2020, IEEE Transactions on Services Computing
[6]   A Test-Based Security Certification Scheme for Web Services [J].
Anisetti, Marco ;
Ardagna, Claudio A. ;
Damiani, Ernesto ;
Saonara, Francesco .
ACM TRANSACTIONS ON THE WEB, 2013, 7 (02)
[7]   From Security to Assurance in the Cloud: A Survey [J].
Ardagna, Claudio A. ;
Asal, Rasool ;
Damiani, Ernesto ;
Quang Hieu Vu .
ACM COMPUTING SURVEYS, 2015, 48 (01)
[8]  
Auer P, 1995, AN S FDN CO, P322, DOI 10.1109/SFCS.1995.492488
[9]   AI Fairness 360: An extensible toolkit for detecting and mitigating algorithmic bias [J].
Bellamy, R. K. E. ;
Dey, K. ;
Hind, M. ;
Hoffman, S. C. ;
Houde, S. ;
Kannan, K. ;
Lohia, P. ;
Martino, J. ;
Mehta, S. ;
Mojsilovie, A. ;
Nagar, S. ;
Ramamurthy, K. Natesan ;
Richards, J. ;
Saha, D. ;
Sattigeri, P. ;
Singh, M. ;
Varshney, K. R. ;
Zhang, Y. .
IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2019, 63 (4-5)
[10]   Wild patterns: Ten years after the rise of adversarial machine learning [J].
Biggio, Battista ;
Roli, Fabio .
PATTERN RECOGNITION, 2018, 84 :317-331