Development and validation of a predictive model for in-hospital mortality in patients with coronary heart disease and renal insufficiency

被引:0
作者
Li, Yahui [1 ]
Cai, Hongsen [2 ]
Zheng, Wei [1 ]
Wang, Meijie [2 ]
Huang, Man [1 ]
Wang, Luyun [1 ]
Wang, Daowen [1 ]
Zhao, Chunxia [1 ]
Hou, Wenguang [2 ]
Ding, Hu [1 ]
Wang, Yan [1 ]
Zhu, Hongling [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Div Cardiol,Dept Internal Med, 1095 Jiefang Ave, Wuhan 430030, Peoples R China
[2] Huazhong Univ Sci & Technol, Coll Life Sci & Technol, Wuhan 430030, Peoples R China
来源
INTERNATIONAL JOURNAL OF CARDIOLOGY CARDIOVASCULAR RISK AND PREVENTION | 2025年 / 26卷
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Coronary heart disease; Renal insufficiency; Machine learning; Death; Shapley additive explanation; GLOMERULAR-FILTRATION-RATE; CHRONIC KIDNEY-DISEASE; ALL-CAUSE; POPULATION;
D O I
10.1016/j.ijcrp.2025.200463
中图分类号
R6 [外科学];
学科分类号
1002 ; 100210 ;
摘要
Background: Coronary Heart Disease (CHD) with renal insufficiency is a significant global health issue. This study aimed to develop and validate a predictive model for in-hospital mortality to enable early risk identification in these patients. Methods: We analyzed data from 11,830 CHD patients with renal insufficiency treated at Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China (1994-2023). Among 113 clinical variables, five key features-age, high-sensitivity C-reactive protein (hs-CRP), estimated glomerular filtration rate (eGFR), creatine kinase (CK), and blood urea-were selected using Recursive Feature Elimination. Six machine learning models (Random Forest, XGBoost, Decision Tree, Neural Network, Logistic Regression, and Support Vector Machine) were developed and assessed for discrimination, calibration, and clinical utility. Temporal validation was performed using data from May 16, 2023 to October 31, 2024. SHapley Additive ex-Planations (SHAP) were used for model interpretation. Results: Of the 11,830 patients, 694 (5.9 %) died during hospitalization. Among the six models, XGBoost showed the best overall performance in the test set, achieving the highest AUC (0.926), lowest Brier score (0.034), highest accuracy (0.957), and balanced sensitivity (0.381) and F1 score (0.512). Decision curve analysis confirmed its superior clinical utility. In a temporally independent validation cohort of 5983 patients, XGBoost maintained strong predictive performance (AUC = 0.901), demonstrating excellent robustness and generalizability. Conclusions: The XGBoost-based model accurately predicts in-hospital mortality in CHD patients with renal insufficiency, supporting early risk stratification and clinical decision-making.
引用
收藏
页数:11
相关论文
共 46 条
[1]   Management of Coronary Disease in Patients with Advanced Kidney Disease [J].
Bangalore, S. ;
Maron, D. J. ;
OBrien, S. M. ;
Fleg, J. L. ;
Kretov, E., I ;
Briguori, C. ;
Kaul, U. ;
Reynolds, H. R. ;
Mazurek, T. ;
Sidhu, M. S. ;
Berger, J. S. ;
Mathew, R. O. ;
Bockeria, O. ;
Broderick, S. ;
Pracon, R. ;
Herzog, C. A. ;
Huang, Z. ;
Stone, G. W. ;
Boden, W. E. ;
Newman, J. D. ;
Ali, Z. A. ;
Mark, D. B. ;
Spertus, J. A. ;
Alexander, K. P. ;
Chaitman, B. R. ;
Chertow, G. M. ;
Hochman, J. S. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 382 (17) :1608-1618
[2]   Assessing and Measuring Chronic Multimorbidity in the Older Population: A Proposal for Its Operationalization [J].
Calderon-Larranaga, Amaia ;
Vetrano, Davide L. ;
Onder, Graziano ;
Gimeno-Feliu, Luis A. ;
Coscollar-Santaliestra, Carlos ;
Carfi, Angelo ;
Pisciotta, Maria S. ;
Angleman, Sara ;
Melis, Rene J. F. ;
Santoni, Giola ;
Mangialasche, Francesca ;
Rizzuto, Debora ;
Welmer, Anna-Karin ;
Bernabei, Roberto ;
Prados-Torres, Alexandra ;
Marengoni, Alessandra ;
Fratiglioni, Laura .
JOURNALS OF GERONTOLOGY SERIES A-BIOLOGICAL SCIENCES AND MEDICAL SCIENCES, 2017, 72 (10) :1417-1423
[3]   The diseased kidney: aging and senescent immunology [J].
Chi, Mingxuan ;
Tian, Zijun ;
Ma, Kuai ;
Li, Yunlong ;
Wang, Li ;
Nasser, Moussa Ide ;
Liu, Chi .
IMMUNITY & AGEING, 2022, 19 (01)
[4]   Non-Conventional Risk Factors: "Fact" or "Fake" in Cardiovascular Disease Prevention? [J].
Cimmino, Giovanni ;
Natale, Francesco ;
Alfieri, Roberta ;
Cante, Luigi ;
Covino, Simona ;
Franzese, Rosa ;
Limatola, Mirella ;
Marotta, Luigi ;
Molinari, Riccardo ;
Mollo, Noemi ;
Loffredo, Francesco S. ;
Golino, Paolo .
BIOMEDICINES, 2023, 11 (09)
[5]   TRIPOD plus AI statement: updated guidance for reporting clinical prediction models that use regression or machine learning methods [J].
Collins, Gary S. ;
Moons, Karel G. M. ;
Dhiman, Paula ;
Riley, Richard ;
Beam, Andrew L. ;
Van Calster, Ben ;
Ghassemi, Marzyeh ;
Liu, Xiaoxuan ;
Reitsma, Johannes B. ;
van Smeden, Maarten ;
Boulesteix, Anne-Laure ;
Camaradou, Jennifer Catherine ;
Celi, Leo Anthony ;
Denaxas, Spiros ;
Denniston, Alastair K. ;
Glocker, Ben ;
Golub, Robert M. ;
Harvey, Hugh ;
Heinze, Georg ;
Hoffman, Michael M. ;
Kengne, Andre Pascal ;
Lam, Emily ;
Lee, Naomi ;
Loder, Elizabeth W. ;
Maier-Hein, Lena ;
Mateen, Bilal A. ;
McCradden, Melissa ;
Oakden-Rayner, Lauren ;
Ordish, Johan ;
Parnell, Richard ;
Rose, Sherri ;
Singh, Karandeep ;
Wynants, Laure ;
Logullo, Patricia .
BMJ-BRITISH MEDICAL JOURNAL, 2024, 385
[6]   Sample size requirements are not being considered in studies developing prediction models for binary outcomes: a systematic review [J].
Dhiman, Paula ;
Ma, Jie ;
Qi, Cathy ;
Bullock, Garrett ;
Sergeant, Jamie C. ;
Riley, Richard D. ;
Collins, Gary S. .
BMC MEDICAL RESEARCH METHODOLOGY, 2023, 23 (01)
[7]   Leveraging machine learning to enhance postoperative risk assessment in coronary artery bypass grafting patients with unprotected left main disease: a retrospective cohort study [J].
Elmahrouk, Ahmed ;
Daoulah, Amin ;
Panduranga, Prashanth ;
Rajan, Rajesh ;
Jamjoom, Ahmed ;
Kanbr, Omar ;
Alzahrani, Badr ;
Qutub, Mohammed A. ;
Yousif, Nooraldaem ;
Chachar, Tarique Shahzad ;
Elmahrouk, Youssef ;
Alshehri, Ali ;
Hassan, Taher ;
Tawfik, Wael ;
Haider, Kamel Hazaa ;
Abohasan, Abdulwali ;
Alqublan, Adel N. ;
Alqahtani, Abdulrahman M. ;
Ghani, Mohamed Ajaz ;
Al Nasser, Faisal Omar M. ;
Almahmeed, Wael ;
Ghonim, Ahmed A. ;
Hashmani, Shahrukh ;
Alshehri, Mohammed ;
Elganady, Abdelmaksoud ;
Shawky, Abeer M. ;
Hussien, Adnan Fathey ;
Abualnaja, Seraj ;
Noor, Taha H. ;
Abdulhabeeb, Ibrahim A. M. ;
Ozdemir, Levent ;
Refaat, Wael ;
Kazim, Hameedullah M. ;
Selim, Ehab ;
Altnji, Issam ;
Ibrahim, Ahmed M. ;
Alquaid, Abdullah ;
Arafat, Amr A. .
INTERNATIONAL JOURNAL OF SURGERY, 2024, 110 (11) :7142-7149
[8]   Missing Data: An Update on the State of the Art [J].
Enders, Craig K. .
PSYCHOLOGICAL METHODS, 2025, 30 (02) :322-339
[9]   Recursive Feature Elimination by Sensitivity Testing [J].
Escanilla, Nicholas Sean ;
Hellerstein, Lisa ;
Kleiman, Ross ;
Kuang, Zhaobin ;
Shull, James D. ;
Page, David .
2018 17TH IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS (ICMLA), 2018, :40-47
[10]   Clinical epidemiology of cardiovascular disease in chronic renal disease [J].
Foley, RN ;
Parfrey, PS ;
Sarnak, MJ .
AMERICAN JOURNAL OF KIDNEY DISEASES, 1998, 32 (05) :S112-S119