FamilyGAN: Generating Kin Face Images Using Generative Adversarial Networks

被引:3
作者
Sinha, Raunak [1 ]
Vatsa, Mayank [2 ]
Singh, Richa [2 ]
机构
[1] IIIT Delhi, New Delhi, India
[2] IIT Jodhpur, Jodhpur, Rajasthan, India
来源
COMPUTER VISION - ECCV 2020 WORKSHOPS, PT III | 2020年 / 12537卷
关键词
Kinship; Image generation; Generative adversarial networks; Deep learning;
D O I
10.1007/978-3-030-67070-2_18
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Automatic kinship verification using face images involves analyzing features and computing similarities between two input images to establish kin-relationship. It has gained significant interest from the research community and several approaches including deep learning architectures are proposed. One of the law enforcement applications of kinship analysis involves predicting the kin image given an input image. In other words, the question posed here is: "given an input image, can we generate a kin-image?" This paper attempts to generate kin-images using Generative Adversarial Learning for multiple kin-relations. The proposed FamilyGAN model incorporates three information, kin-gender, kinship loss, and reconstruction loss, in a GAN model to generate kin images. FamilyGAN is the first model capable of generating kin-images for multiple relations such as parent-child and siblings from a single model. On the WVU Kinship Video database, the proposed model shows very promising results for generating kin images. Experimental results show 71.34% kinship verification accuracy using the images generated via FamilyGAN.
引用
收藏
页码:297 / 311
页数:15
相关论文
共 22 条
[1]  
Arjovsky M, 2017, Arxiv, DOI [arXiv:1701.07875, 10.48550/arXiv.1701.07875]
[2]  
Choi Y, 2018, Arxiv, DOI [arXiv:1711.09020, 10.48550/arXiv.1711.09020]
[3]   Learning a similarity metric discriminatively, with application to face verification [J].
Chopra, S ;
Hadsell, R ;
LeCun, Y .
2005 IEEE COMPUTER SOCIETY CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOL 1, PROCEEDINGS, 2005, :539-546
[4]   Human Facial Shape and Size Heritability and Genetic Correlations [J].
Cole, Joanne B. ;
Manyama, Mange ;
Larson, Jacinda R. ;
Liberton, Denise K. ;
Ferrara, Tracey M. ;
Riccardi, Sheri L. ;
Li, Mao ;
Mio, Washington ;
Klein, Ophir D. ;
Santorico, Stephanie A. ;
Hallgrimsson, Benedikt ;
Spritz, Richard A. .
GENETICS, 2017, 205 (02) :967-978
[5]   Genetics of the human face: Identification of large-effect single gene variants [J].
Crouch, Daniel J. M. ;
Winney, Bruce ;
Koppen, Willem P. ;
Christmas, William J. ;
Hutnik, Katarzyna ;
Day, Tammy ;
Meena, Devendra ;
Boumertit, Abdelhamid ;
Hysi, Pirro ;
Nessa, Ayrun ;
Spector, Tim D. ;
Kittler, Josef ;
Bodmer, Walter F. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2018, 115 (04) :E676-E685
[6]  
Dahan E, 2018, Arxiv, DOI arXiv:1809.08493
[7]   TOWARDS COMPUTATIONAL MODELS OF KINSHIP VERIFICATION [J].
Fang, Ruogu ;
Tang, Kevin D. ;
Snavely, Noah ;
Chen, Tsuhan .
2010 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, 2010, :1577-1580
[8]   GANKIN: generating Kin faces using disentangled GAN [J].
Ghatas, Fady S. ;
Hemayed, ElSayed E. .
SN APPLIED SCIENCES, 2020, 2 (02)
[9]  
Goodfellow IJ, 2014, ADV NEUR IN, V27, P2672
[10]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976