A comprehensive review of deep learning techniques for interaction-aware trajectory prediction in urban autonomous driving

被引:0
作者
Gomes, Iago Pacheco [1 ]
Wolf, Denis Fernando [1 ]
机构
[1] Univ Sao Paulo, Inst Math & Comp Sci, Ave Trabalhador Sao Carlense 400 Ctr, BR-13566590 Sao Carlos, SP, Brazil
基金
巴西圣保罗研究基金会;
关键词
Trajectory prediction; Maneuver intention; Interaction; Autonomous vehicles; MOTION PREDICTION; BEHAVIOR PREDICTION; NEURAL-NETWORKS; HYBRID APPROACH; VEHICLE; GRAPH; INTENTION; ROAD; OPPORTUNITIES; ATTENTION;
D O I
10.1016/j.neucom.2025.131014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Autonomous vehicles can improve urban transport by using multiple components that accurately represent their surroundings and improve decision-making processes. One essential component is trajectory prediction, which estimates the future states of traffic participants and anticipates hazardous scenarios. There are different approaches for trajectory prediction, in which Intention-aware and Interaction-aware approaches represent the state-of-the-art since they involve better representation of the surroundings. This paper reviews the literature on Interaction-Aware Trajectory Prediction for autonomous vehicles. It explores how incorporating maneuver intentions and interactions can improve prediction accuracy, and it examines the techniques and datasets employed in this field.
引用
收藏
页数:19
相关论文
共 329 条
[1]  
AbuAli N, 2016, International Journal of Vehicular Technology, V2016, P1, DOI [10.1155/2016/6952791, 10.1155/2016/6952791, DOI 10.1155/2016/6952791]
[2]   DGInet: Dynamic graph and interaction-aware convolutional network for vehicle trajectory prediction [J].
An, Jiyao ;
Liu, Wei ;
Liu, Qingqin ;
Guo, Liang ;
Ren, Ping ;
Li, Tao .
NEURAL NETWORKS, 2022, 151 :336-348
[3]   Trajectory Forecasting of Entities Using Advanced Deep Learning Techniques [J].
Apoorva, K. H. ;
Dhanya, Raghu ;
Anjana, Anil Kumar ;
Natarajan, S. .
ADVANCED COMPUTATIONAL AND COMMUNICATION PARADIGMS, VOL 2, 2018, 706 :745-754
[4]  
Artun Edo A., 2020, Decision-Making Strategies for Automated Driving in Urban Environments
[5]  
Augustin D, 2019, FORSCH INGENIEURWES, V83, P149, DOI 10.1007/s10010-019-00321-0
[6]   ADAPT: Efficient Multi-Agent Trajectory Prediction with Adaptation [J].
Aydemir, Gorkay ;
Akan, Adil Kaan ;
Guney, Fatma .
2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, :8261-8271
[7]   Can Language Beat Numerical Regression? Language-Based Multimodal Trajectory Prediction [J].
Bae, Inhwan ;
Lee, Junoh ;
Jeon, Hae-Gon .
2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, :753-766
[8]   Injecting knowledge in data-driven vehicle trajectory predictors [J].
Bahari, Mohammadhossein ;
Nejjar, Ismail ;
Alahi, Alexandre .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2021, 128
[9]  
Baldi P., 2012, AUTOENCODERS UNSUPER
[10]   A Deep Concept Graph Network for Interaction-Aware Trajectory Prediction [J].
Ban, Yutong ;
Li, Xiao ;
Rosman, Guy ;
Gilitschenski, Igor ;
Meireles, Ozanan ;
Karaman, Sertac ;
Rus, Daniela .
2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, :8992-8998