Artificial intelligence applications in psychoradiology

被引:69
作者
Li, Fei [1 ,2 ,3 ]
Sun, Huaiqiang [1 ,2 ,3 ]
Biswal, Bharat B. [4 ,5 ]
Sweeney, John A. [1 ,6 ]
Gong, Qiyong [1 ,2 ,3 ]
机构
[1] Sichuan Univ, Huaxi MR Res Ctr HMRRC, Dept Radiol, West China Hosp, Chengdu 610041, Sichuan, Peoples R China
[2] Chinese Acad Med Sci, Res Unit Psychoradiol, Chengdu 610041, Peoples R China
[3] Sichuan Univ, West China Hosp, Funct & Mol Imaging Key Lab Sichuan Prov, West China Hosp, Sichuan, Peoples R China
[4] New Jersey Inst Technol, Dept Biomed Engn, Newark, NJ 07102 USA
[5] Univ Elect Sci & Technol China, Clin Hosp, Chengdu Brain Sci Inst, MOE Key Lab Neuroinformat, Chengdu 610054, Peoples R China
[6] Univ Cincinnati, Dept Psychiat & Behav Neurosci, Cincinnati, OH 45219 USA
来源
PSYCHORADIOLOGY | 2021年 / 1卷 / 02期
基金
中国国家自然科学基金;
关键词
Psychoradiology; magnetice resonance imaging; brain; artificial intelligence; machine learning; deep learning; graph neural network; 1ST-EPISODE SCHIZOPHRENIA; WHITE-MATTER; BIPOLAR DISORDER; BRAIN; ABNORMALITIES; CONNECTIVITY; CLASSIFICATION; NETWORKS; PATTERNS; DISEASE;
D O I
10.1093/psyrad/kkab009
中图分类号
R445 [影像诊断学];
学科分类号
100207 ;
摘要
One important challenge in psychiatric research is to translate findings from brain imaging research studies that identified brain alterations in patient groups into an accurate diagnosis at an early stage of illness, prediction of prognosis before treatment, and guidance for selection of effective treatments that target patient-relevant pathophysiological features. This is the primary aim of the field of Psychoradiology. Using databases collected from large samples at multiple centers, sophisticated artificial intelligence (AI) algorithms may be used to develop clinically useful image analysis pipelines that can help physicians diagnose, predict, and make treatment decisions. In this review, we selectively summarize psychoradiological research using magnetic resonance imaging of the brain to explore the neural mechanism of psychiatric disorders, and outline progress and the path forward for the combination of psychoradiology and AI for complementing clinical examinations in patients with psychiatric disorders, as well as limitations in the application of AI that should be considered in future translational research.
引用
收藏
页码:94 / 107
页数:14
相关论文
共 67 条
[1]   Early-Course Unmedicated Schizophrenia Patients Exhibit Elevated Prefrontal Connectivity Associated with Longitudinal Change [J].
Anticevic, Alan ;
Hu, Xinyu ;
Xiao, Yuan ;
Hu, Junmei ;
Li, Fei ;
Bi, Feng ;
Cole, Michael W. ;
Savic, Aleksandar ;
Yang, Genevieve J. ;
Repovs, Grega ;
Murray, John D. ;
Wang, Xiao-Jing ;
Huang, Xiaoqi ;
Lui, Su ;
Krystal, John H. ;
Gong, Qiyong .
JOURNAL OF NEUROSCIENCE, 2015, 35 (01) :267-286
[2]   Subcortical Brain Volume, Regional Cortical Thickness, and Cortical Surface Area Across Disorders: Findings From the ENIGMA ADHD, ASD, and OCD Working Groups [J].
Boedhoe, Premika S. W. ;
van Rooij, Daan ;
Hoogman, Martine ;
Twisk, Jos W. R. ;
Schmaal, Lianne ;
Abe, Yoshinari ;
Alonso, Pino ;
Ameis, Stephanie H. ;
Anikin, Anatoly ;
Anticevic, Alan ;
Arango, Celso ;
Arnold, Paul D. ;
Asherson, Philip ;
Assogna, Francesca ;
Auzias, Guillaume ;
Baker, Justin T. ;
Banaj, Nerisa ;
Banaschewski, Tobias ;
Baranov, Alexander ;
Bargallo, Nuria ;
Batistuzzo, Marcelo C. ;
Baumeister, Sarah ;
Baur-Streubel, Ramona ;
Behrmann, Marlene ;
Bellgrove, Mark A. ;
Benedetti, Francesco ;
Beucke, Jan C. ;
Biederman, Joseph ;
Bollettini, Irene ;
Bose, Anushree ;
Bralten, Janita ;
Bramati, Ivanei E. ;
Brandeis, Daniel ;
Brem, Silvia ;
Brennan, Brian P. ;
Busatto, Geraldo F. ;
Calderoni, Sara ;
Calvo, Anna ;
Calvo, Rosa ;
Castellanos, Francisco X. ;
Cercignani, Mara ;
Chaim-Avancini, Tiffany M. ;
Chantiluke, Kaylita C. ;
Cheng, Yuqi ;
Cho, Kang Ik K. ;
Christakou, Anastasia ;
Ciullo, Valentina ;
Coghill, David ;
Conzelmann, Annette ;
Cubillo, Ana, I .
AMERICAN JOURNAL OF PSYCHIATRY, 2020, 177 (09) :834-843
[3]   Treatment response prediction and individualized identification of first-episode drug-naive schizophrenia using brain functional connectivity [J].
Cao, Bo ;
Cho, Raymond Y. ;
Chen, Dachun ;
Xiu, Meihong ;
Wang, Li ;
Soares, Jair C. ;
Zhang, Xiang Yang .
MOLECULAR PSYCHIATRY, 2020, 25 (04) :906-913
[4]  
Chang M., 2020, Mol Psychiatry
[5]   A Multichannel Deep Neural Network Model Analyzing Multiscale Functional Brain Connectome Data for Attention Deficit Hyperactivity Disorder Detection [J].
Chen, Ming ;
Li, Hailong ;
Wang, Jinghua ;
Dillman, Jonathan R. ;
Parikh, Nehal A. ;
He, Lili .
RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (01)
[6]   Identification of Distinct Psychosis Biotypes Using Brain-Based Biomarkers [J].
Clementz, Brett A. ;
Sweeney, John A. ;
Hamm, Jordan P. ;
Ivleva, Elena I. ;
Ethridge, Lauren E. ;
Pearlson, Godfrey D. ;
Keshavan, Matcheri S. ;
Tamminga, Carol A. .
AMERICAN JOURNAL OF PSYCHIATRY, 2016, 173 (04) :373-384
[7]   A Survey on Network Embedding [J].
Cui, Peng ;
Wang, Xiao ;
Pei, Jian ;
Zhu, Wenwu .
IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2019, 31 (05) :833-852
[8]   Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders [J].
D'Cruz, A-M ;
Mosconi, M. W. ;
Ragozzino, M. E. ;
Cook, E. H. ;
Sweeney, J. A. .
TRANSLATIONAL PSYCHIATRY, 2016, 6 :e916-e916
[9]   Automated deep learning design for medical image classification by health-care professionals with no coding experience: a feasibility study [J].
Faes, Livia ;
Wagner, Siegfried K. ;
Fu, Dun Jack ;
Liu, Xiaoxuan ;
Korot, Edward ;
Ledsam, Joseph R. ;
Back, Trevor ;
Chopra, Reena ;
Pontikos, Nikolas ;
Kern, Christoph ;
Moraes, Gabriella ;
Schmid, Martin K. ;
Sim, Dawn ;
Balaskas, Konstantinos ;
Bachmann, Lucas M. ;
Denniston, Alastair K. ;
Keane, Pearse A. .
LANCET DIGITAL HEALTH, 2019, 1 (05) :E232-E242
[10]   The minimal preprocessing pipelines for the Human Connectome Project [J].
Glasser, Matthew F. ;
Sotiropoulos, Stamatios N. ;
Wilson, J. Anthony ;
Coalson, Timothy S. ;
Fischl, Bruce ;
Andersson, Jesper L. ;
Xu, Junqian ;
Jbabdi, Saad ;
Webster, Matthew ;
Polimeni, Jonathan R. ;
Van Essen, David C. ;
Jenkinson, Mark .
NEUROIMAGE, 2013, 80 :105-124