Computational Static Aeroelastic Analyses in Transonic Flows

被引:0
作者
Lyrio, J. Allan A. [1 ]
Azevedo, Joao Luiz F. [2 ]
Rade, Domingos A. [3 ]
da Silva, Ricardo G. [2 ]
机构
[1] Inst Tecnol Aeronaut, Space Sci & Technol Program, Dept Ciencia & Tecnol Aerosp, DCTA ITA CTE, BR-12228900 Sao Jose Dos Campos, SP, Brazil
[2] Inst Aeronaut & Espaco, Aerodynam Div, Dept Ciencia & Tecnol Aerosp, DCTA IAE ALA, BR-12228904 Sao Jose Dos Campos, SP, Brazil
[3] Inst Tecnol Aeronaut, Mech Engn Div, Dept Ciencia & Tecnol Aerosp, DCTA ITA EAM, BR-12228900 Sao Jose Dos Campos, SP, Brazil
来源
AIAA AVIATION 2020 FORUM | 2020年
基金
巴西圣保罗研究基金会;
关键词
RADIAL BASIS FUNCTIONS; INTERPOLATION; EFFICIENT; LOAD;
D O I
暂无
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Transonic flows at high Reynolds numbers can lead to high dynamic pressures and, consequently, aerostructural deflections of the aircraft. Computational Fluid Dynamics (CFD) tools have been widely integrated withComputational Solid Mechanics (CSM) solvers, based on finite element discretization, in order to improve predictions of the aerodynamic performance and aircraft structural loads. The main objective of the paper is to describe the methodology and the numerical effort to integrate an in-house CFD code with a CSM solver for static aeroelastic applications in a high fidelity approach. The cases used for process validation are the static aeroelastic results from the High Reynolds Aerostructural Dynamics project (HIRENASD) and NASA's Common Research Model (CRM) from the 6th AIAA CFD Drag Prediction Workshop. All fluid-structure interaction (FSI) procedures have been implemented in FORTRAN and integrated via shell script. Results demonstrating converged wing surface pressures and deflections are compared to available experimental data. For the HIRENASD model, FSI aerodynamic results indicated considerable degradation in both pitching and rolling moment curves when compared with ideal rigid CFD simulations. Moreover, NASA CRM FSI simulations are performed for two different sets of modal shapes, showing wing tip deformation sensitivity.
引用
收藏
页数:20
相关论文
共 39 条
[1]  
AePW-1, 2012, AEROELASTIC PREDI
[2]  
Andrejasic M., 2016, A Mesh Morphing Based FSI Method Used in Aeronautical Optimization Applications, DOI [10.7712/100016.1908.7206, DOI 10.7712/100016.1908.7206]
[3]  
ANSYS, 2015, Skewness Quality Measures
[4]  
Ballmann J., 2006, 25 INT C AERONAUTI
[5]  
Ballmann J., 2008, 46 AIAA AEROSPACE
[6]   Multivariate interpolation for fluid-structure-interaction problems using radial basis functions [J].
Beckert, A ;
Wendland, H .
AEROSPACE SCIENCE AND TECHNOLOGY, 2001, 5 (02) :125-134
[7]  
Braun C., 2007, Ein modulares Verfahren fur die numerische aeroelastische Analyse von Luftfahrzeugen
[8]   Conservative load projection and tracking for fluid-structure problems [J].
Cebral, JR ;
Lohner, R .
AIAA JOURNAL, 1997, 35 (04) :687-692
[9]  
Chen S. P., 1999, Tech. rep., NASA Report
[10]  
Chwalowski P., 2011, INT FORUM AEROEL