A new three-dimensional autonomous chaotic system

被引:0
作者
Liu, Jianping [1 ]
Shen, Yufa [1 ]
Li, Xia [1 ]
机构
[1] Department of Mathematics and Information Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao
来源
Journal of Computational Information Systems | 2015年 / 11卷 / 03期
关键词
Bifurcation diagram; Chaotic system; Lyapunov exponents spectrum; Poincaré; section; Power spectrum;
D O I
10.12733/jcis13173
中图分类号
学科分类号
摘要
This paper constructs a novel chaotic system, which is topologically non-equivalent with Chen system, Lorenz system and other kinds of classical chaotic systems. The system balance, dissipation, Lyapunov index and dimension are analyzed. In order to verify the chaotic property of the system, diagrams of numerical simulation, time domain waveform, Lyapunov exponent spectrum, power spectrum, bifurcation and Poincaré section are provided. Finally, the influence of system parameters on system dynamic behavior is investigated. ©, 2015, Binary Information Press. All right reserved.
引用
收藏
页码:1021 / 1028
页数:7
相关论文
共 13 条
[1]  
Lorenz E.N., Deterministic non-periode flow, J. Atmos. Sci, (1963)
[2]  
Luo Y.L., Du M.H., Chin. Phys. B, 22, (2013)
[3]  
Xie K., Lei M., Feng Z.J., A study of a kind of hyper chaotic cryptosystem security, Acta Phys. Sin, 54, pp. 1267-1272, (2005)
[4]  
Liu L.D., Zhang J.Q., Xu G.X., Liang L.S., Wang M.S., A chaotic secure communication method based on chaos systems partial series parameter estimation, Acta Phys. Sin, 63, (2014)
[5]  
Liu Z.H., Fundamentals and Applications of Chaotic Dynamics, (2006)
[6]  
Chen G.R., Ueta T., Int. J. Bifur. Chaos, 9, (1999)
[7]  
Chen G.R., Lu J.H., Dynamics of the Lorenz System Family: Analysis, Control and Synchronization, (2003)
[8]  
Qi G.Y., Du S.Z., Chen G.R., Chen Z.Q., Yuan Z.Z., On a four-dimensional chaotic system, Chaos, Solitons and Fractals, 23, pp. 1671-1682, (2005)
[9]  
Zhao P.D., Lj J., Zhang X.D., Study on a class of chaotic systems with fractional order, Acta Phys. Sin., 57, pp. 2791-2798, (2008)
[10]  
Hu G.S., A family of hyperchaotic systems with four-wing attractors, Acta Phys. Sin., 58, pp. 3734-3741, (2009)