Astronomical laser frequency comb for high resolution spectrographof a 2.16-m telescope

被引:0
作者
Wu Y. [1 ,2 ,3 ]
Ye H. [1 ,2 ]
Han J. [1 ,2 ]
Zou P. [4 ]
Fu L. [4 ]
Xiao D. [1 ,2 ]
机构
[1] Nanjing Institute of Astronomical Optics & Technology, National Astronomical Observatories, Chinese Academy of Sciences, Nanjing, 210042, Jiangsu
[2] Key Laboratory of Astronomical Optics & Technology, Chinese Academy of Sciences, Nanjing, 210042, Jiangsu
[3] University of Chinese Academy of Sciences, Beijing
[4] Menlo Systems GmbH, Martinsried
来源
Guangxue Xuebao/Acta Optica Sinica | 2016年 / 36卷 / 06期
关键词
Astronomical spectrograph; Fiber lasers; Lasers; Radial velocity; Supercontinuum;
D O I
10.3788/AOS201636.0614001
中图分类号
学科分类号
摘要
An astronomical laser frequency comb (astro-comb), which will be applied as a calibrator on the high resolution spectrograph of the 2.16-m telescope in Xinglong Observatory, is introduced. The astro-comb is based on an ytterbium-doped fiber laser frequency comb. By mode filtering, the mode spacing of the comb is increased to 25 GHz, which matches the resolution of the astronomical spectrograph. After spectral broadening and flattening, the spectrum span increases to more than 270 nm in visible range, the spectrum flatness maintains within 1 dB for a long time, and the side mode suppression ratio reaches 42 dB. The theoretical calibration precision of the radial velocity for the astro-comb reaches cm/s level, which meets the requirements for searching the earth-like extrasolar planets and directly detecting the acceleration of the cosmic expansion. © 2016, Chinese Lasers Press. All right reserved.
引用
收藏
页数:6
相关论文
共 20 条
[1]  
Bouchy F., Isambert J., Lovis C., Et al., Charge transfer inefficiency effect for high-precision radial velocity measurements, EAS Publications Series, 37, pp. 247-253, (2009)
[2]  
Diddams S.A., Jones D.J., Ye J., Et al., Direct link between microwave and optical frequencies with a 300 THz femtosecond laser comb, Physical Review Letters, 84, 22, pp. 5102-5105, (2000)
[3]  
Udem T., Holzwarth R., Hansch T.W., Optical frequency metrology, Nature, 416, 6877, pp. 233-237, (2002)
[4]  
Yan L., Zhang Y., Zhao W., Et al., 186 MHz low amplitude noise erbium-doped-fiber femtosecond laser, Chinese J Lasers, 41, 8, (2014)
[5]  
Li C.H., Benedick A.J., Fendel P., Et al., A laser frequency comb that enables radial velocity measurements with a precision of 1 cm·s<sup>-1</sup> , Nature, 452, 7187, pp. 610-612, (2008)
[6]  
Steinmetz T., Wilken T., Araujo-Hauck C., Et al., Laser frequency combs for astronomical observations, Science, 321, 5894, pp. 1335-1337, (2008)
[7]  
Wilken T., Curto G.L., Probst R.A., Et al., A spectrograph for exoplanet observations calibrated at the centimetre-per-second level, Nature, 485, 7400, pp. 611-614, (2012)
[8]  
Zhang Z., Advances in high repetition rate femtosecond fiber lasers, Acta Optica Sinica, 31, 9, (2011)
[9]  
Li C.H., Glenday A.G., Phillips D.F., Et al., Green astro-comb for HARPS-N, SPIE, 8446, (2012)
[10]  
Glenday A.G., Li C.H., Langellier N., Et al., Operation of a broadband visible-wavelength astro-comb with a high-resolution astrophysical spectrograph, Optica, 2, 3, pp. 250-254, (2015)