Effect of Concentration of Lithium Bis(fluorosulfonyl)imide on the Performance of Silicon Anodes for Li-Ion Batteries

被引:0
作者
Asheim, K. [1 ]
Wagner, N. P. [2 ]
Vullum, P. E. [2 ]
Foss, C. E. L. [3 ]
Maehlen, J. P. [3 ]
Svensson, A. M. [1 ]
机构
[1] Norwegian Univ Sci & Technol NTNU, Dept Mat Sci & Engn, Trondheim, Norway
[2] SINTEF Ind, Trondheim, Norway
[3] Inst Energy Technol, Kjeller, Norway
来源
ELECTROCHEMICAL SCIENCE ADVANCES | 2025年
关键词
concentrated solutions; lithium bis(fluorosulfonyl)imide; silicon anode; SOLID-ELECTROLYTE INTERPHASE; SUPERCONCENTRATED ELECTROLYTES; FLUOROETHYLENE CARBONATE; NANOSILICON ELECTRODES; STABILITY; MECHANISM; SALT; CORROSION; INTERCALATION; TEMPERATURE;
D O I
10.1002/elsa.70009
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The conventional electrolytes for Li-ion batteries are based on the LiPF6 salt and carbonate solvents. Due to challenges with the stability, alternative salts are sought, and lithium bis(fluorosulfonyl)imide (LiFSI) is an interesting candidate. In this work, we investigate the performance of concentrated electrolytes based on LiFSI (range 1-10 M) and carbonate solvents, in combination with low-cost, micron-sized silicon anodes. LiFSI has an excellent solubility, and by use of concentrated electrolytes, corrosion of the aluminium current collector on the cathode side can be avoided, which is otherwise a challenge. The 5 M LiFSI electrolyte (molar salt to solvent ratio of 1:2.5) shows a similar ohmic resistance and rate performance as the 1 M LiFSI electrolyte. The solid electrolyte interphase formed in 5 M LiFSI is thin and dominated by inorganic compounds, in particular LiF. For long-term galvanostatic cycling with a lower cut-off potential of 50 mV, the 1 M LiFSI electrolyte shows the best stability. However, by limiting the lithiation, and thus the expansion of the silicon by increasing the cut-off voltage to 120 mV, the cycling performance is similar for all electrolytes and electrodes deliver >1000 mAh/g for more than 300 cycles.
引用
收藏
页数:12
相关论文
共 46 条
[1]   Silicon-Carbon composite anodes from industrial battery grade silicon [J].
Andersen, Hanne Flaten ;
Foss, Carl Erik Lie ;
Voje, Jorunn ;
Tronstad, Ragnar ;
Mokkelbost, Tommy ;
ErikVullum, Per ;
Ulvestad, Asbjorn ;
Kirkengen, Martin ;
Maehlen, Jan Petter .
SCIENTIFIC REPORTS, 2019, 9 (1)
[2]   Improved electrochemical performance and solid electrolyte interphase properties of electrolytes based on lithium bis(fluorosulfonyl)imide for high content silicon anodes [J].
Asheim, K. ;
Vullum, P. E. ;
Wagner, N. P. ;
Andersen, H. F. ;
Maehlen, J. P. ;
Svensson, A. M. .
RSC ADVANCES, 2022, 12 (20) :12517-12530
[3]   On the capacity fading of LiCoO2 intercalation electrodes:: the effect of cycling, storage, temperature, and surface film forming additives [J].
Aurbach, D ;
Markovsky, B ;
Rodkin, A ;
Levi, E ;
Cohen, YS ;
Kim, HJ ;
Schmidt, M .
ELECTROCHIMICA ACTA, 2002, 47 (27) :4291-4306
[4]   Synthesis, application and industrialization of LiFSI: A review and perspective [J].
Cai, Yuanli ;
Zhang, Hu ;
Cao, Yitao ;
Wang, Qiyuan ;
Cao, Bin ;
Zhou, Zhenlun ;
Lv, Fulu ;
Song, Wen ;
Duo, Daogaocao ;
Yu, Lei .
JOURNAL OF POWER SOURCES, 2022, 535
[5]   The Electrochemical Performance of Silicon Nanoparticles in Concentrated Electrolyte [J].
Chang, Zeng-hua ;
Wang, Jian-tao ;
Wu, Zhao-hui ;
Gao, Min ;
Wu, Shuai-jin ;
Lu, Shi-gang .
CHEMSUSCHEM, 2018, 11 (11) :1787-1796
[6]   Concentrated Electrolyte for Lithium/Li-Ion Batteries [J].
Chang, Zenghua ;
Wang, Jiantao ;
Wu, Zhaohui ;
Zhao, Jinling ;
Lu, Shigang .
PROGRESS IN CHEMISTRY, 2018, 30 (12) :1960-1974
[7]   Multiprobe Study of the Solid Electrolyte Interphase on Silicon-Based Electrodes in Full-Cell Configuration [J].
Dupre, N. ;
Moreau, P. ;
De Vito, E. ;
Quazuguel, L. ;
Boniface, M. ;
Bordes, A. ;
Rudisch, C. ;
Bayle-Guillemaud, P. ;
Guyomard, D. .
CHEMISTRY OF MATERIALS, 2016, 28 (08) :2557-2572
[8]  
Eshetu G. G., 2016, In-Depth Interfacial Chemistry and Reactivity Focused Investigation of Lithium-Imide- and Lithium-Imidazole-Based Electrolytes, V8, P16087
[9]   Effect of Fluoroethylene Carbonate (FEC) on the Performance and Surface Chemistry of Si-Nanowire Li-Ion Battery Anodes [J].
Etacheri, Vinodkumar ;
Haik, Ortal ;
Goffer, Yossi ;
Roberts, Gregory A. ;
Stefan, Ionel C. ;
Fasching, Rainier ;
Aurbach, Doron .
LANGMUIR, 2012, 28 (01) :965-976
[10]   Lithium bis(fluorosulfonyl)imide (LiFSI) as conducting salt for nonaqueous liquid electrolytes for lithium-ion batteries: Physicochemical and electrochemical properties [J].
Han, Hong-Bo ;
Zhou, Si-Si ;
Zhang, Dai-Jun ;
Feng, Shao-Wei ;
Li, Li-Fei ;
Liu, Kai ;
Feng, Wen-Fang ;
Nie, Jin ;
Li, Hong ;
Huang, Xue-Jie ;
Armand, Michel ;
Zhou, Zhi-Bin .
JOURNAL OF POWER SOURCES, 2011, 196 (07) :3623-3632