Predicting Glycerol Electrochemical Oxidation Potentials Using Machine Learning

被引:0
作者
Soares, Joao M. L. [1 ]
von Zuben, Theodora W. [1 ]
Salles Jr, Airton G. [1 ]
Barbon Junior, Sylvio [2 ]
Bonacin, Juliano A. [1 ]
机构
[1] Univ Estadual Campinas UNICAMP, Inst Quim, BR-13083859 Campinas, SP, Brazil
[2] Univ Trieste, Dipartimento Ingn & Architettura, I-34127 Trieste, Italy
基金
巴西圣保罗研究基金会;
关键词
machine learning; biomass valorization; glycerol oxidation; energy transition; explainable AI; ELECTROOXIDATION; SELECTIVITY; REGRESSION; CHEMISTRY; CATALYST;
D O I
10.21577/0103-5053.20250090
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrooxidation of glycerol offers apromising pathway for energy transition and biomass valorization, making it a key area of research. This study employs machine learning (ML) to predict the onset of glycerol electrooxidation and anodic peak potentials, enhancing the understanding of factors influencing these metrics. A dataset derived from 155 research articles includes parameters such as pH, electrolyte type, reference electrode, electrode material, current density, and scan rate. Fourteen ML algorithms were evaluated, with adaptive boosting (AdaBoost) achieving the best performance: root mean square error (RMSE) of 0.117 and coefficient of determination (R2) of 0.902 for onset potential and RMSE of 0.122 and R2 of 0.870 for anodic peak potential. Explainable artificial intelligence (XAI) techniques like Shapley additive explanations (SHAP) analysis identified pH, electrolyte type, and electrode properties (e.g., atomic number, electronegativity) as key predictors. Replacing elemental features with atomic properties improved performance and reduced complexity. This work demonstrates the potential of ML to optimize glycerol oxidation and advance alcohol electrooxidation research.
引用
收藏
页数:15
相关论文
共 77 条
[1]   Explaining individual predictions when features are dependent: More accurate approximations to Shapley values [J].
Aas, Kjersti ;
Jullum, Martin ;
Loland, Anders .
ARTIFICIAL INTELLIGENCE, 2021, 298
[2]   A machine learning approach to circumventing the curse of dimensionality in discontinuous time series machine data [J].
Aremu, Oluseun Omotola ;
Hyland-Wood, David ;
McAree, Peter Ross .
RELIABILITY ENGINEERING & SYSTEM SAFETY, 2020, 195
[3]   Electronic structure engineering for electrochemical water oxidation [J].
Babar, Pravin ;
Mahmood, Javeed ;
Maligal-Ganesh, Raghu, V ;
Kim, Seok-Jin ;
Xue, Zhonghua ;
Yavuz, Cafer T. .
JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (38) :20218-20241
[4]   Advances and challenges in understanding the electrocatalytic conversion of carbon dioxide to fuels [J].
Birdja, Yuvraj Y. ;
Perez-Gallent, Elena ;
Figueiredo, Marta C. ;
Gottle, Adrien J. ;
Calle-Vallejo, Federico ;
Koper, Marc T. M. .
NATURE ENERGY, 2019, 4 (09) :732-745
[5]  
Bisong E., 2019, BUILDING MACHINE LEA
[6]  
Calle M Luz, 2011, Brief Bioinform, V12, P86, DOI 10.1093/bib/bbq011
[7]   Efficiently optimizing the oxygen catalytic properties of the birnessite type manganese dioxide for zinc-air batteries [J].
Chen, Bin ;
Miao, He ;
Hu, Ruigan ;
Yin, Mingming ;
Wu, Xuyang ;
Sun, Shanshan ;
Wang, Qin ;
Li, Shihua ;
Yuan, Jinliang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 852
[8]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[9]   Pulse potential mediated selectivity for the electrocatalytic oxidation of glycerol to glyceric acid [J].
Chen, Wei ;
Zhang, Liang ;
Xu, Leitao ;
He, Yuanqing ;
Pang, Huan ;
Wang, Shuangyin ;
Zou, Yuqin .
NATURE COMMUNICATIONS, 2024, 15 (01)
[10]   Electrosynthesis of ethylene glycol from biomass glycerol [J].
Chi, Haoyuan ;
Liang, Zhanpeng ;
Kuang, Siyu ;
Jin, Yaxin ;
Li, Minglu ;
Yan, Tianxiang ;
Lin, Jianlong ;
Wang, Shuangyin ;
Zhang, Sheng ;
Ma, Xinbin .
NATURE COMMUNICATIONS, 2025, 16 (01)