Deep Transfer Learning for Interpretable Chest X-Ray Diagnosis

被引:0
作者
Lago, Carlos [1 ]
Lopez-Gazpio, Inigo [1 ]
Onieva, Enrique [1 ]
机构
[1] Univ Deusto UD, Fac Engn, Av Univ 24, Bilbao 48007, Spain
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2021 | 2021年 / 12886卷
关键词
X-Ray diagnosis; Deep learning; Convolutional neural networks; Model interpretability; Transfer learning; Image classification;
D O I
10.1007/978-3-030-86271-8_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents an application of different deep learning related paradigms to the diagnosis of multiple chest pathologies. Within the article, the application of a well-known deep Convolutional Neural Network (DenseNet) is used and fine-tuned for different chest X-Ray medical diagnosis tasks. Different image augmentation methods are applied over the training images to improve the performance of the resulting model as well as the incorporation of an explainability layer to highlight zones of the X-Ray picture supporting the diagnosis. The model is finally deployed in a web server, which can be used to upload X-Ray images and get a real-time analysis. The proposal demonstrates the possibilities of deep transfer learning and convolutional neural networks in the field of medicine, enabling fast and reliable diagnosis. The code is made publicly available (https://github.com/carloslago/IntelligentXray - for the model training, https://github.com/carloslago/IntelligentXray Server - for the server demo).
引用
收藏
页码:524 / 537
页数:14
相关论文
共 25 条
[11]  
Irvin J, 2019, AAAI CONF ARTIF INTE, P590
[12]   Pan-cancer diagnostic consensus through searching archival histopathology images using artificial intelligence [J].
Kalra, Shivam ;
Tizhoosh, H. R. ;
Shah, Sultaan ;
Choi, Charles ;
Damaskinos, Savvas ;
Safarpoor, Amir ;
Shafiei, Sobhan ;
Babaie, Morteza ;
Diamandis, Phedias ;
Campbell, Clinton J. V. ;
Pantanowitz, Liron .
NPJ DIGITAL MEDICINE, 2020, 3 (01)
[13]   Identifying Medical Diagnoses and Treatable Diseases by Image-Based Deep Learning [J].
Kermany, Daniel S. ;
Goldbaum, Michael ;
Cai, Wenjia ;
Valentim, Carolina C. S. ;
Liang, Huiying ;
Baxter, Sally L. ;
McKeown, Alex ;
Yang, Ge ;
Wu, Xiaokang ;
Yan, Fangbing ;
Dong, Justin ;
Prasadha, Made K. ;
Pei, Jacqueline ;
Ting, Magdalena ;
Zhu, Jie ;
Li, Christina ;
Hewett, Sierra ;
Dong, Jason ;
Ziyar, Ian ;
Shi, Alexander ;
Zhang, Runze ;
Zheng, Lianghong ;
Hou, Rui ;
Shi, William ;
Fu, Xin ;
Duan, Yaou ;
Huu, Viet A. N. ;
Wen, Cindy ;
Zhang, Edward D. ;
Zhang, Charlotte L. ;
Li, Oulan ;
Wang, Xiaobo ;
Singer, Michael A. ;
Sun, Xiaodong ;
Xu, Jie ;
Tafreshi, Ali ;
Lewis, M. Anthony ;
Xia, Huimin ;
Zhang, Kang .
CELL, 2018, 172 (05) :1122-+
[14]   Computerized Bone Age Estimation Using Deep Learning-Based Program: Evaluation of the Accuracy and Efficiency [J].
Kim, Jeong Rye ;
Shim, Woo Hyun ;
Yoon, Hee Mang ;
Hong, Sang Hyup ;
Lee, Jin Seong ;
Cho, Young Ah ;
Kim, Sangki .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2017, 209 (06) :1374-1380
[15]  
Krizhevsky Alex, 2009, Learning multiple layers of features from tiny images
[16]   A survey of deep neural network architectures and their applications [J].
Liu, Weibo ;
Wang, Zidong ;
Liu, Xiaohui ;
Zeng, Nianyin ;
Liu, Yurong ;
Alsaadi, Fuad E. .
NEUROCOMPUTING, 2017, 234 :11-26
[17]  
Netzer Yuval, 2011, P NIPS WORKSH DEEP L
[18]  
Cohen JP, 2020, Arxiv, DOI [arXiv:2006.11988, 10.59275/j.melba.2020-48g7, DOI 10.59275/J.MELBA.2020-48G7]
[19]   Deep learning applications in ophthalmology [J].
Rahimy, Ehsan .
CURRENT OPINION IN OPHTHALMOLOGY, 2018, 29 (03) :254-260
[20]   "Why Should I Trust You?" Explaining the Predictions of Any Classifier [J].
Ribeiro, Marco Tulio ;
Singh, Sameer ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :1135-1144