Deep Transfer Learning for Interpretable Chest X-Ray Diagnosis

被引:0
作者
Lago, Carlos [1 ]
Lopez-Gazpio, Inigo [1 ]
Onieva, Enrique [1 ]
机构
[1] Univ Deusto UD, Fac Engn, Av Univ 24, Bilbao 48007, Spain
来源
HYBRID ARTIFICIAL INTELLIGENT SYSTEMS, HAIS 2021 | 2021年 / 12886卷
关键词
X-Ray diagnosis; Deep learning; Convolutional neural networks; Model interpretability; Transfer learning; Image classification;
D O I
10.1007/978-3-030-86271-8_44
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work presents an application of different deep learning related paradigms to the diagnosis of multiple chest pathologies. Within the article, the application of a well-known deep Convolutional Neural Network (DenseNet) is used and fine-tuned for different chest X-Ray medical diagnosis tasks. Different image augmentation methods are applied over the training images to improve the performance of the resulting model as well as the incorporation of an explainability layer to highlight zones of the X-Ray picture supporting the diagnosis. The model is finally deployed in a web server, which can be used to upload X-Ray images and get a real-time analysis. The proposal demonstrates the possibilities of deep transfer learning and convolutional neural networks in the field of medicine, enabling fast and reliable diagnosis. The code is made publicly available (https://github.com/carloslago/IntelligentXray - for the model training, https://github.com/carloslago/IntelligentXray Server - for the server demo).
引用
收藏
页码:524 / 537
页数:14
相关论文
共 25 条
[1]  
Abadi Martin, 2016, Proceedings of OSDI '16: 12th USENIX Symposium on Operating Systems Design and Implementation. OSDI '16, P265
[2]   The impact of artificial intelligence in medicine on the future role of the physician [J].
Ahuja, Abhimanyu S. .
PEERJ, 2019, 7
[3]   Deep Learning in Cardiology [J].
Bizopoulos, Paschalis ;
Koutsouris, Dimitrios .
IEEE REVIEWS IN BIOMEDICAL ENGINEERING, 2019, 12 :168-193
[4]   Deep learning for chest X-ray analysis: A survey [J].
calli, Erdi ;
Sogancioglu, Ecem ;
van Ginneken, Bram ;
van Leeuwen, Kicky G. ;
Murphy, Keelin .
MEDICAL IMAGE ANALYSIS, 2021, 72 (72)
[5]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[6]   Automated Deep Transfer Learning-Based Approach for Detection of COVID-19 Infection in Chest X-rays [J].
Das, N. Narayan ;
Kumar, N. ;
Kaur, M. ;
Kumar, V ;
Singh, D. .
IRBM, 2022, 43 (02) :114-119
[7]  
Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
[8]  
Gal Y, 2016, Arxiv, DOI arXiv:1506.02158
[9]   Densely Connected Convolutional Networks [J].
Huang, Gao ;
Liu, Zhuang ;
van der Maaten, Laurens ;
Weinberger, Kilian Q. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :2261-2269
[10]  
Iandola F, 2014, Arxiv, DOI [arXiv:1404.1869, DOI 10.48550/ARXIV.1404.1869]